cover
Contact Name
Tole Sutikno
Contact Email
ijece@iaesjournal.com
Phone
-
Journal Mail Official
ijece@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Electrical and Computer Engineering
ISSN : 20888708     EISSN : 27222578     DOI : -
International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world.
Articles 112 Documents
Search results for , issue "Vol 10, No 1: February 2020" : 112 Documents clear
Moisture content investigation in the soil samples using microwave dielectric constant measurement method Shashi K. Dargar; Viranjay M. Srivastava
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 1: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (442.951 KB) | DOI: 10.11591/ijece.v10i1.pp704-710

Abstract

The microwaves of typical frequency ranges of 3 GHz to 30 GHz have been in use for remote sensing applications which are progressing rapidly. The microwaves can sense existing moisture in any material that absorbs moisture such as soil or vegetation. In case of soils which may be comprised of variable mix proportionate of solids, liquids or gases and distinct textures subjected to the associated size and the arrangements of soil particles. Hence, the moisture absorption by a specific type of soil used to be different. The inherent physical and electrical properties such as color, texture, grains, dielectric constant, conductivity or permeability, etc. differentiate various soils. In this work, authors present soil moisture measurement by simple estimation of emissivity i.e. the ratio of energy radiated by an object to absorbing the body of same physical temperature. A strategic method of measuring dielectric constant using a microwave signal is used in this research work. The measurement of the dielectric constant of the soils collected from the specific regions and analysis of results has been reported. The proposed method is less complex and can further be used for the identification of soil moisture and agricultural applications.
Framework for comprehensive enhancement of brain tumor images with single-window operation Deepthi Murthy T. S.; Sadashivappa G.
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 1: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (515.472 KB) | DOI: 10.11591/ijece.v10i1.pp801-808

Abstract

Usage of grayscale format of radiological images is proportionately more as compared to that of colored one. This format of medical image suffers from all the possibility of improper clinical inference which will lead to error-prone analysis in further usage of such images in disease detection or classification. Therefore, we present a framework that offers single-window operation with a set of image enhancing algorithm meant for further optimizing the visuality of medical images. The framework performs preliminary pre-processing operation followed by implication of linear and non-linear filter and multi-level image enhancement processes. The significant contribution of this study is that it offers a comprehensive mechanism to implement the various enhancement schemes in highly discrete way that offers potential flexibility to physical in order to draw clinical conclusion about the disease being monitored. The proposed system takes the case study of brain tumor to implement to testify the framework.
A new model for iris data set classification based on linear support vector machine parameter's optimization Zahraa Faiz Hussain; Hind Raad Ibraheem; Mohammad Alsajri; Ahmed Hussein Ali; Mohd Arfian Ismail; Shahreen Kasim; Tole Sutikno
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 1: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (504.778 KB) | DOI: 10.11591/ijece.v10i1.pp1079-1084

Abstract

Data mining is known as the process of detection concerning patterns from essential amounts of data. As a process of knowledge discovery. Classification is a data analysis that extracts a model which describes an important data classes. One of the outstanding classifications methods in data mining is support vector machine classification (SVM). It is capable of envisaging results and mostly effective than other classification methods. The SVM is a one technique of machine learning techniques that is well known technique, learning with supervised and have been applied perfectly to a vary problems of: regression, classification, and clustering in diverse domains such as gene expression, web text mining. In this study, we proposed a newly mode for classifying iris data set using SVM classifier and genetic algorithm to optimize c and gamma parameters of linear SVM, in addition principle components analysis (PCA) algorithm was use for features reduction.
Cooperative-hierarchical based edge-computing approach for resources allocation of distributed mobile and IoT applications Maha Aljarah; Mohammad Shurman; Sharhabeel Alnabelsi
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 1: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (700.761 KB) | DOI: 10.11591/ijece.v10i1.pp296-307

Abstract

Using mobile and Internet of Things (IoT) applications is becoming very popular and obtained researchers’ interest and commercial investment, in order to fulfill future vision and the requirements for smart cities. These applications have common demands such as fast response, distributed nature, and awareness of service location. However, these requirements’ nature cannot be satisfied by central systems services that reside in the clouds. Therefore, edge computing paradigm has emerged to satisfy such demands, by providing an extension for cloud resources at the network edge, and consequently, they become closer to end-user devices. In this paper, exploiting edge resources is studied; therefore, a cooperative-hierarchical approach for executing the pre-partitioned applications’ modules between edges resources is proposed, in order to reduce traffic between the network core and the cloud, where this proposed approach has a polynomial-time complexity. Furthermore, edge computing increases the efficiency of providing services, and improves end-user experience. To validate our proposed cooperative-hierarchical approach for modules placement between edge nodes’ resources, iFogSim toolkit is used. The obtained simulation results show that the proposed approach reduces network’s load and the total delay compared to a baseline approach for modules’ placement, moreover, it increases the network’s overall throughput.
Parallel Control Structure Scheme for Load Frequency Controller Design using Direct Synthesis Approach Anand Kumar; Md Nishat Anwar
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 1: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (790.096 KB) | DOI: 10.11591/ijece.v10i1.pp47-60

Abstract

This paper presents load frequency controller design for a single area as well as the multi-area thermal power system using direct synthesis approach with parallel control structure (PCS) scheme. The set-point and load frequency controller has been designed for frequency regulation and maintains tie-line power within a pre-specified limit for LFC power system.  The proposed controller has been implemented for single-area, two-area, and four-area thermal power system for frequency regulation. The proposed method shows impressive simulation results compared with existed control method. The robustness of the proposed method has been examined with the help maximum sensitivity and parametric variation in the nominal power system.
Current predictive controller for high frequency resonant inverter in induction heating Azzedine Khati; Abdelkader Kansab; Rachid Taleb; Houari Khouidmi
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 1: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (585.159 KB) | DOI: 10.11591/ijece.v10i1.pp255-264

Abstract

In the context of this article, we are particularly interested in the modeling and control of an induction heating system powered by high frequency resonance inverter. The proposed control scheme comprises a current loop and a PLL circuit. This latter is an electronic assembly for slaving the instantaneous phase of output on the instantaneous input phase, and is used to follow the rapid variations of the frequency.To further improve the transient dynamics of the studied system and in order to reduce the impact of measurement noise on the control signal, a generalized predictive control has been proposed to control the current of the inductor. We discussed the main steps of this command, whose it uses a minimization algorithm to obtain an optimal control signals, its advantages are: its design is simple, less complexity and direct manipulation of the control signal.The results have shown the effectiveness of the proposed method, especially in the parameters variation and/or the change of the reference current.
Speed profile optimization of an electrified train in Cat Linh-Ha Dong metro line based on pontryagin's maximum principle An Thi Hoai Thu Anh; Nguyen Van Quyen; Nguyen Thanh Hai; Nguyen Van Lien; Vu Hoang Phuong
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 1: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1070.058 KB) | DOI: 10.11591/ijece.v10i1.pp233-242

Abstract

An urban railway is a complex technical system that consumes large amounts of energy, but this means of transportation still has been obtained more and more popularity in densely populated cities because of its features of high-capacity transportation capability, high speed, security, punctuality, lower emission, reduction of traffic congestion. The improved energy consumption and environment are two of the main objectives for future transportation. Electrified trains can meet these objectives by the recuperation and reuse of regenerative braking energy and by the energy - efficient operation. Two methods are to enhance energy efficiency: one is to improve technology (e.g., using energy storage system, reversible or active substations to recuperate regenerative braking energy, replacing traction electric motors  by energy-efficient traction system as permanent magnet electrical motors; train's mass reduction by lightweight material mass...); the other is to improve operational procedures (e.g. energy efficient driving including: eco-driving; speed profile optimization; Driving Advice System (DAS); Automatic Train Operation (ATO); traffic management optimization...). Among a lot of above solutions for saving energy, which one is suitable for current conditions of metro lines in Vietnam. The paper proposes the optimization method based on Pontryagin's Maximum Principle (PMP) to find the optimal speed profile for electrified train of Cat Linh-Ha Dong metro line, Vietnam in an effort to minimize the train operation energy consumption.
A mitigation of channel crosstalk effect in dispersion shifted fiber based on durability of modulation technique Ali Shaban; Murad Obaid Abed; Ehab Abdul Razzaq Hussein; H. J. Abd
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 1: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1273.764 KB) | DOI: 10.11591/ijece.v10i1.pp891-899

Abstract

In fiber optics the Four Wave Mixing (FWM) has the harmful effect of an optical transmission system that can severely limit Wavelength Division Multiplexing (WDM) and reduce the transmission aptness. This work preset the durability of the different modulation format was tested to FWM by using Dispersion Shifted Fiber (DSF). Moreover, the performance of the proposed system is surveyed by changing the fiber length and applying an information rate of 200 Gb/s. The experimental results show that the FWM capacity has decreased significantly by more than 14 dB when applying Return to Zero (RZ) modulation form. In addition, in terms of the propsed system performance in the first channel and with 700 km distance, it was observed that the lower Bit Error Rate (BER) in the normal RZ modulation is equal to 1.3×10-13. As well as it is noticeable when applied the Non Return to Zero (NRZ), the Modified Duobinary Return to Zero (MDRZ) and Gaussian modulation, the system performance will be quickly changed and getting worse, where the BERs increased to 1.3×10-4, 1.3×10-6 and 1.3×10-2 consecutively at same channel and for the same parameters.
ResSeg: Residual encoder-decoder convolutional neural network for food segmentation Javier O. Pinzón-Arenas; Robinson Jiménez-Moreno; César G. Pachón-Suescún
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 1: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1501.071 KB) | DOI: 10.11591/ijece.v10i1.pp1017-1026

Abstract

This paper presents the implementation and evaluation of different convolutional neural network architectures focused on food segmentation. To perform this task, it is proposed the recognition of 6 categories, among which are the main food groups (protein, grains, fruit, vegetables) and two additional groups, rice and drink or juice. In addition, to make the recognition more complex, it is decided to test the networks with food dishes already started, i.e. during different moments, from its serving to its finishing, in order to verify the capability to see when there is no more food on the plate. Finally, a comparison is made between the two best resulting networks, a SegNet with architecture VGG-16 and a network proposed in this work, called Residual Segmentation Convolutional Neural Network or ResSeg, with which accuracies greater than 90% and interception-over-union greater than 75% were obtained. This demonstrates the ability, not only of SegNet architectures for food segmentation, but the use of residual layers to improve the contour of the segmentation and segmentation of complex distribution or initiated of food dishes, opening the field of application of this type of networks to be implemented in feeding assistants or in automated restaurants, including also for dietary control for the amount of food consumed.
A trade-off design of microstrip broadband power amplifier for UHF applications Mohamed Ribate; Rachid Mandry; Jamal Zbitou; Larbi El Abdellaoui; Ahmed Errkik; Mohamed Latrach; Ahmed Lakhssassi
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 1: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (811.987 KB) | DOI: 10.11591/ijece.v10i1.pp919-927

Abstract

In this paper, the design of a Broadband Power Amplifier for UHF applications is presented. The proposed BPA is based on ATF13876 Agilent active device. The biasing and matching networks both are implemented by using microstrip transmission lines. The input and output matching circuits are designed by combining two broadband matching techniques: a binomial multi-section quarter wave impedance transformer and an approximate transformation of previously designed lumped elements. The proposed BPA shows excellent performances in terms of impedance matching, power gain and unconditionally stability over the operating bandwidth ranging from 1.2 GHz to 3.3 GHz. At 2.2 GHz, the large signal simulation shows a saturated output power of 18.875 dBm with an output 1-dB compression point of 6.5 dBm of input level and a maximum PAE of 36.26%.

Page 1 of 12 | Total Record : 112


Filter by Year

2020 2020


Filter By Issues
All Issue Vol 15, No 5: October 2025 Vol 15, No 4: August 2025 Vol 15, No 3: June 2025 Vol 15, No 2: April 2025 Vol 15, No 1: February 2025 Vol 14, No 6: December 2024 Vol 14, No 5: October 2024 Vol 14, No 4: August 2024 Vol 14, No 3: June 2024 Vol 14, No 2: April 2024 Vol 14, No 1: February 2024 Vol 13, No 6: December 2023 Vol 13, No 5: October 2023 Vol 13, No 4: August 2023 Vol 13, No 3: June 2023 Vol 13, No 2: April 2023 Vol 13, No 1: February 2023 Vol 12, No 6: December 2022 Vol 12, No 5: October 2022 Vol 12, No 4: August 2022 Vol 12, No 3: June 2022 Vol 12, No 2: April 2022 Vol 12, No 1: February 2022 Vol 11, No 6: December 2021 Vol 11, No 5: October 2021 Vol 11, No 4: August 2021 Vol 11, No 3: June 2021 Vol 11, No 2: April 2021 Vol 11, No 1: February 2021 Vol 10, No 6: December 2020 Vol 10, No 5: October 2020 Vol 10, No 4: August 2020 Vol 10, No 3: June 2020 Vol 10, No 2: April 2020 Vol 10, No 1: February 2020 Vol 9, No 6: December 2019 Vol 9, No 5: October 2019 Vol 9, No 4: August 2019 Vol 9, No 3: June 2019 Vol 9, No 2: April 2019 Vol 9, No 1: February 2019 Vol 8, No 6: December 2018 Vol 8, No 5: October 2018 Vol 8, No 4: August 2018 Vol 8, No 3: June 2018 Vol 8, No 2: April 2018 Vol 8, No 1: February 2018 Vol 7, No 6: December 2017 Vol 7, No 5: October 2017 Vol 7, No 4: August 2017 Vol 7, No 3: June 2017 Vol 7, No 2: April 2017 Vol 7, No 1: February 2017 Vol 6, No 6: December 2016 Vol 6, No 5: October 2016 Vol 6, No 4: August 2016 Vol 6, No 3: June 2016 Vol 6, No 2: April 2016 Vol 6, No 1: February 2016 Vol 5, No 6: December 2015 Vol 5, No 5: October 2015 Vol 5, No 4: August 2015 Vol 5, No 3: June 2015 Vol 5, No 2: April 2015 Vol 5, No 1: February 2015 Vol 4, No 6: December 2014 Vol 4, No 5: October 2014 Vol 4, No 4: August 2014 Vol 4, No 3: June 2014 Vol 4, No 2: April 2014 Vol 4, No 1: February 2014 Vol 3, No 6: December 2013 Vol 3, No 5: October 2013 Vol 3, No 4: August 2013 Vol 3, No 3: June 2013 Vol 3, No 2: April 2013 Vol 3, No 1: February 2013 Vol 2, No 6: December 2012 Vol 2, No 5: October 2012 Vol 2, No 4: August 2012 Vol 2, No 3: June 2012 Vol 2, No 2: April 2012 Vol 2, No 1: February 2012 Vol 1, No 2: December 2011 Vol 1, No 1: September 2011 More Issue