cover
Contact Name
Tole Sutikno
Contact Email
ijece@iaesjournal.com
Phone
-
Journal Mail Official
ijece@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Electrical and Computer Engineering
ISSN : 20888708     EISSN : 27222578     DOI : -
International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world.
Articles 6,301 Documents
Autonomous open-source electric wheelchair platform with internet-of-things and proportional-integral-derivative control Maneetham, Dechrit; Crisnapati, Padma Nyoman; Thwe, Yamin
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i6.pp6764-6777

Abstract

This study aims to improve the working model of autonomous wheelchair navigation for disabled patients using the internet of things (IoT). A proportional-integral-derivative (PID) control algorithm is applied to the autonomous wheelchair to control movement based on position coordinates and orientation provided by the global positioning system (GPS) and digital compass sensor. This system is controlled through the IoT system, which can be operated from a web browser. Autonomous wheelchairs are handled using a waypoint algorithm; ESP8266 is used as a microcontroller unit that acts as a bridge for transmitting data obtained by sensors and controlling the direct current (DC) motors as actuators. The proposed system and the autonomous wheelchair performance gave satisfactory results with a longitude and latitude error of 1.1 meters to 4.5 meters. This error is obtained because of the limitations of GPS with the type of Ublox Neo-M8N. As a starting point for further research, a mathematical model of a wheelchair was created, and pure pursuit control algorithm was used to simulate the movement. An open-source autonomous IoT platform for electric wheelchairs has been successfully created; this platform can help nurses and caretakers.
Android-manifest extraction and labeling method for malware compilation and dataset creation Hindarto, Djarot; Djajadi, Arko
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i6.pp6568-6577

Abstract

Malware is a nuisance for smartphone users. The impact is detrimental to smartphone users if the smartphone is infected by malware. Malware identification is not an easy process for ordinary users due to its deeply concealed dangers in application package kit (APK) files available in the Android Play Store. In this paper, the challenges of creating malware datasets are discussed. Long before a malware classification process and model can be built, the need for datasets with representative features for most types of malwares has to be addressed systematically. Only after a quality data set is available can a quality classification model be obtained using machine learning (ML) or deep learning (DL) algorithms. The entire malware classification process is a full pipeline process and sub processes. The authors purposefully focus on the process of building quality malware datasets, not on ML itself, because implementing ML requires another effort after the reliable dataset is fully built. The overall step in creating the malware dataset starts with the extraction of the Android Manifest from the APK file set and ends with the labeling method for all the extracted APK files. The key contribution of this paper is on how to generate datasets systematically from any APK file.
Skin cancer classifier based on convolution residual neural network Ajel, Ahmed R.; Al-Dujaili, Ayad Qasim; Hadi, Zaid G.; Humaidi, Amjad Jaleel
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i6.pp6240-6248

Abstract

Accurate automatic classification of skin lesion images is a great challenge as the image features are very close in these images. Convolution neural networks (CNN) promise to provide a potential classifier for skin lesions. This work will present dermatologist-level classification of skin cancer by using residual network (ResNet-50) as a deep learning convolutional neural network (DLCNN) that maps images to class labels. It presents a classifier with a single CNN to automatically recognize benign and malignant skin images. The network inputs are only disease labels and image pixels. About 320 clinical images of the different diseases have been used to train CNN. The model performance has been tested with untrained images from the two labels. This model identifies the most common skin cancers and can be updated with a new unlimited number of images. The DLCNN trained by the ResNet-50 model showed good classification of the benign and malignant skin categories. The ResNet-50 as a DLCNN has verified a significant recognition rate of more than 97% on the testing images, which proves that the benign and malignant lesion skin images are properly classified.
Two-link lower limb exoskeleton model control enhancement using computed torque Parikesit, Elang; Maneetham, Dechrit
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i6.pp6204-6215

Abstract

Robotic technology has recently been used to help stroke patients with gait and balance rehabilitation. Rehabilitation robots such as gait trainers are designed to assist patients in systematic, repetitive training sessions to speed up their recovery from injuries. Several control algorithms are commonly used on exoskeletons, such as proportional, integral and derivative (PID) as linear control. However, linear control has several disadvantages when applied to the exoskeleton, which has the problem of uncertainties such as load and stiffness variations of the patient’s lower limb. To improve the lower limb exoskeleton for the gait trainer, the computed torque controller (CTC) is introduced as a control approach in this study. When the dynamic properties of the system are only partially known, the computed torque controller is an essential nonlinear controller. A mathematical model forms the foundation of this controller. The suggested control approach’s effectiveness is evaluated using a model or scaled-down variation of the method. The performance of the suggested calculated torque control technique is then evaluated and contrasted with that of the PID controller. Because of this, the PID controller’s steady-state error in the downward direction can reach 5.6%, but the CTC can lower it to 2.125%.
An efficient reconfigurable optimal source detection and beam allocation algorithm for signal subspace factorization Thazeen, Sadiya; Srikantaswamy, Mallikarjunaswamy
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i6.pp6452-6465

Abstract

Now a days, huge amount of data is communicated through channels in wireless network. It requires an efficient parallel operation for the optimal utilization of frequency, time allocation and coding model for signal subspace factorization in smart antenna. In view of this requirement, an efficient reconfigurable optimal source detection and beam allocation algorithm (RoSDBA) is proposed. The proposed algorithm is able to allocate desired signal to the user space to reduce the noise and also for efficient allocation of subspace to remove disturbance in all directions. The proposed method efficiently utilizes the antenna array elements by accurate identification and allocation of antenna array elements such as individual radiators, radiation beam, signal strength, and disturbance factor. With respect to simulation analysis, the proposed method shows better performance for the resolution, radiation beam allocations, identification bias, distribution factor and time taken for the detection of various array arrangements and source numbers.
Assessment of the main features of the model of dissemination of information in social networks Imanberdi, Assel; Lira, La; Aitolkyn, Kulmuratova; Leila, Rzayeva; Abitova, Gulnara; Aigerim, Bakiyeva; Ainur, Orynbayeva; Assem, Baimakhanbetova
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i6.pp6729-6736

Abstract

Social networks provide a fairly wide range of data that allows one way or another to evaluate the effect of the dissemination of information. This article presents the results of a study that describes methods for determining the key parameters of the model needed to analyze and predict the dissemination of information in social networks. An approach based on the analysis of statistical data on user behavior in social networks is proposed. The process of evaluating the main features of the model is described, including the mathematical methods used for data analysis and information dissemination modeling. The study aims to understand the processes of information dissemination in social networks and develop recommendations for the effective use of social networks as a communication and brand promotion tool, as well as to consider the analytical properties of the classical susceptible-infected-removed (SIR) model and evaluate its applicability to the problem of information dissemination. The results of the study can be used to create algorithms and techniques that will effectively manage the process of information dissemination in social networks.
An underwater image enhancement by reducing speckle noise using modified anisotropic diffusion filter Malathi, Venkatesan; Manikandan, Arumugam
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i6.pp6361-6368

Abstract

Underwater images are usually suffering from the issues of quality degradation, such as low contrast due to blurring details, color deviations, non-uniform lighting, and noise. Since last few decades, many researches are undergoing for restoration and enhancement for degraded underwater images. In this paper, we proposed a novel algorithm using modified anisotropic diffusion filter with dynamic color balancing strategy. This proposed algorithm performs based on an employing effective noise reduction as well as edge preserving technique with dynamic color correction to make uniform lighting and minimize the speckle noise. Furthermore, reanalyze the contributions and limitations of existing underwater image restoration and enhancement methods. Finally, in this research provided the detailed objective evaluations and compared with the various underwater scenarios for above said challenges also made subjective studies, which shows that our proposed method will improve the quality of the image and significantly enhanced the image.
Image noise reduction by deep learning methods Uzakkyzy, Nurgul; Ismailova, Aisulu; Ayazbaev, Talgatbek; Beldeubayeva, Zhanar; Kodanova, Shynar; Utenova, Balbupe; Satybaldiyeva, Aizhan; Kaldarova, Mira
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i6.pp6855-6861

Abstract

Image noise reduction is an important task in the field of computer vision and image processing. Traditional noise filtering methods may be limited by their ability to preserve image details. The purpose of this work is to study and apply deep learning methods to reduce noise in images. The main tasks of noise reduction in images are the removal of Gaussian noise, salt and pepper noise, noise of lines and stripes, noise caused by compression, and noise caused by equipment defects. In this paper, such noises as the removal of raindrops, dust, and traces of snow on the images were considered. In the work, complex patterns and high noise density were studied. A deep learning algorithm, such as the decomposition method with and without preprocessing, and their effectiveness in applying noise reduction are considered. It is expected that the results of the study will confirm the effectiveness of deep learning methods in reducing noise in images. This may lead to the development of more accurate and versatile image processing methods capable of preserving details and improving the visual quality of images in various fields, including medicine, photography, and video.
Improved autocorrelation method for time synchronization in filtered orthogonal frequency division multiplexing Suyoto, Suyoto; Subekti, Agus; Satyawan, Arief Suryadi; Marta Dinata, Mochamad Mardi; Mitayani, Arumjeni; Adhi, Purwoko
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i6.pp6538-6546

Abstract

Time synchronization is essential in multicarrier systems such as filtered orthogonal frequency division multiplexing (F-OFDM) because it determines the whole system’s performance. Differ with OFDM, where subcarrier allocation is not flexible. In F-OFDM, the subcarrier allocation is more flexible, and the whole subcarrier in one symbol can be grouped into several subbands. The use of subcarriers that are limited to only one subband can reduce the performance of time synchronization based on autocorrelation (AC) methods. In this study, we first compare the performance of the AC-based time synchronization algorithms used in F-OFDM when training symbols are limited to one subband. Secondly, we made improvements to the AC-based time synchronization with the averaging technique of its timing metric, thus increasing the accuracy of time estimates in the F-OFDM system. The averaging technique of the timing metric improved the performance of the AC method in cases where the training symbol is limited to one subband, as shown in the simulation results.
Adopting DevOps practices: an enhanced unified theory of acceptance and use of technology framework Salih, Ahmad Mahdi; Syed-Mohamad, Sharifah Mashita; Keikhosrokiani, Pantea; Samsudin, Nur Hana
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i6.pp6701-6717

Abstract

DevOps software development approach is widely used in the software engineering discipline. DevOps eliminates the development and operations department barriers. The paper aims to develop a conceptual model for adopting DevOps practices in software development organizations by extending the unified theory of acceptance and use of technology (UTAUT). The research also aims to determine the influencing factors of DevOps practices’ acceptance and adoption in software organizations, determine gaps in the software development literature, and introduce a clear picture of current technology acceptance and adoption research in the software industry. A comprehensive literature review clarifies how users accept and adopt new technologies and what leads to adopting DevOps practices in the software industry as the starting point for developing a conceptual framework for adopting DevOps in software organizations. The literature results have formulated the conceptual framework for adopting DevOps practices. The resulting model is expected to improve understanding of software organizations’ acceptance and adoption of DevOps practices. The research hypotheses must be tested to validate the model. Future work will include surveys and expert interviews for model enhancement and validation. This research fulfills the necessity to study how software organizations accept and adopt DevOps practices by enhancing UTAUT.

Filter by Year

2011 2026


Filter By Issues
All Issue Vol 16, No 1: February 2026 Vol 15, No 6: December 2025 Vol 15, No 5: October 2025 Vol 15, No 4: August 2025 Vol 15, No 3: June 2025 Vol 15, No 2: April 2025 Vol 15, No 1: February 2025 Vol 14, No 6: December 2024 Vol 14, No 5: October 2024 Vol 14, No 4: August 2024 Vol 14, No 3: June 2024 Vol 14, No 2: April 2024 Vol 14, No 1: February 2024 Vol 13, No 6: December 2023 Vol 13, No 5: October 2023 Vol 13, No 4: August 2023 Vol 13, No 3: June 2023 Vol 13, No 2: April 2023 Vol 13, No 1: February 2023 Vol 12, No 6: December 2022 Vol 12, No 5: October 2022 Vol 12, No 4: August 2022 Vol 12, No 3: June 2022 Vol 12, No 2: April 2022 Vol 12, No 1: February 2022 Vol 11, No 6: December 2021 Vol 11, No 5: October 2021 Vol 11, No 4: August 2021 Vol 11, No 3: June 2021 Vol 11, No 2: April 2021 Vol 11, No 1: February 2021 Vol 10, No 6: December 2020 Vol 10, No 5: October 2020 Vol 10, No 4: August 2020 Vol 10, No 3: June 2020 Vol 10, No 2: April 2020 Vol 10, No 1: February 2020 Vol 9, No 6: December 2019 Vol 9, No 5: October 2019 Vol 9, No 4: August 2019 Vol 9, No 3: June 2019 Vol 9, No 2: April 2019 Vol 9, No 1: February 2019 Vol 8, No 6: December 2018 Vol 8, No 5: October 2018 Vol 8, No 4: August 2018 Vol 8, No 3: June 2018 Vol 8, No 2: April 2018 Vol 8, No 1: February 2018 Vol 7, No 6: December 2017 Vol 7, No 5: October 2017 Vol 7, No 4: August 2017 Vol 7, No 3: June 2017 Vol 7, No 2: April 2017 Vol 7, No 1: February 2017 Vol 6, No 6: December 2016 Vol 6, No 5: October 2016 Vol 6, No 4: August 2016 Vol 6, No 3: June 2016 Vol 6, No 2: April 2016 Vol 6, No 1: February 2016 Vol 5, No 6: December 2015 Vol 5, No 5: October 2015 Vol 5, No 4: August 2015 Vol 5, No 3: June 2015 Vol 5, No 2: April 2015 Vol 5, No 1: February 2015 Vol 4, No 6: December 2014 Vol 4, No 5: October 2014 Vol 4, No 4: August 2014 Vol 4, No 3: June 2014 Vol 4, No 2: April 2014 Vol 4, No 1: February 2014 Vol 3, No 6: December 2013 Vol 3, No 5: October 2013 Vol 3, No 4: August 2013 Vol 3, No 3: June 2013 Vol 3, No 2: April 2013 Vol 3, No 1: February 2013 Vol 2, No 6: December 2012 Vol 2, No 5: October 2012 Vol 2, No 4: August 2012 Vol 2, No 3: June 2012 Vol 2, No 2: April 2012 Vol 2, No 1: February 2012 Vol 1, No 2: December 2011 Vol 1, No 1: September 2011 More Issue