International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world.
Articles
6,301 Documents
New Two Simple Sinusoidal Generators with Four 45o Phase Shifted Voltage Outputs Using Single FDCCII and Grounded Components
Kasim K. Abdalla
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 6: December 2018
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (534.121 KB)
|
DOI: 10.11591/ijece.v8i6.pp5080-5088
Two new 45o phase shifted sinusoidal oscillator configurations employing single Second Generation Fully Differential Current Conveyor (FDCCII), two grounded capacitors and two grounded resistors are presented. The proposed oscillators can provide four sinusoidal voltage outputs with each a 45o phase difference. These circuits can also be utilized as voltage-mode quadrature oscillators. Additional output stages incorporation in FDCCII can also result in current outputs spaced 45 degree apart. The proposed circuits enjoy the simplicity and less passive and active component. The Total Harmonic Distortion (THD) of the output waveforms was reasonability values (less than 4.5%). The circuits can supply two equi-quadrature outputs and the Lissajous patterns confirm the quadrature voltage output waveforms. The workability of the circuits is simulated by PSPICE 0.18 μm CMOS technology. The non-ideal analysis and simulation results verifying theoretical analyses are also investigated.
Cooling on Photovoltaic Panel Using Forced Air Convection Induced by DC Fan
A.R. Amelia;
Y.M. Irwan;
M. Irwanto;
W.Z. Leow;
N. Gomesh;
I. Safwati;
M.A.M. Anuar
International Journal of Electrical and Computer Engineering (IJECE) Vol 6, No 2: April 2016
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1523.196 KB)
|
DOI: 10.11591/ijece.v6i2.pp526-534
Photovoltaic (PV) panel is the heart of solar system generally has a low energy conversion efficiency available in the market. PV panel temperature control is the main key to keeping the PV panel operate efficiently. This paper presented the great influenced of the cooling system in reduced PV panel temperature. A cooling system has been developed based on forced convection induced by DC fan as cooling mechanism. DC fan was attached at the back side of PV panel will extract the heat energy distributed and cool down the PV panel. The working operation of DC fan controlled by PIC18F4550 microcontroller which depending on the average value of PV panel temperature. Experiments were performed with and without cooling mechanism attached at the backside PV panel. The whole PV system was subsequently evaluated in outdoor weather conditions. As a result, it is concluded that there is an optimum number of DC fans required as cooling mechanism in producing efficient electrical output from a PV panel. The study clearly shows how cooling mechanism improves the performance of PV panel at the hot climatic weather. In short, the reduction of PV panel temperature is very important to keep its performance operated efficiently.
Active LC Clamp dv/dt Filter for Voltage Reflection due to Long Cable in Induction Motor Drives
Mini R;
Manjiri Joshi;
B. Hariram Satheesh;
Dinesh M.N.
International Journal of Electrical and Computer Engineering (IJECE) Vol 6, No 4: August 2016
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (943.054 KB)
|
DOI: 10.11591/ijece.v6i4.pp1456-1469
This paper presents an active LC clamped dv/dt filter to mitigate the over voltages appearing across the motor terminals. The over voltages at motor terminal is due to voltage reflection effect of long motor cable connected between high frequency PWM inverter having high dv/dt switching waveforms and ac motor drives. The voltage reflection due to fast switching transients can be reduced by increasing the rise time and fall time of inverter output voltage pulses. The most commonly available mitigating technique is a passive dv/dt filter between inverter and cable. Since, size, cost and losses of passive LC dv/dt filter is more, an active dv/dt filtering technique is used to reduce over voltage at motor terminals. Active LC clamp filtering technique used here consists of a small LC filter designed for a single motor cable length which can be used for any lengths of cable up to 1000m only by changing the active control of the PWM pulses to achieve the desired voltage slope during voltage transition period. The basic principle of active dv/dt filer used here is to charge and discharge the capacitor in the filter with modified PWM pulses to increase the rise time and fall time of output voltage pulses without any extra devices to handle the transient response of the LC filter. Detailed investigation is carried out by simulation using MATLAB-Simulink software with active control of common LC clamp dv/dt filter suitable for various cable lengths ranging from 100 m to 1000 m. Comparative analysis is done with active dv/dt filter designed with a common LC clamp filter and active LC clamp dv/dt filter designed for various cable lengths and also with diode clamped passive dv/dt filter. The results proves the effectiveness of the active common LC dv/dt filter to mitigate the over voltages at motor terminal for cable lengths up to 1000m.
Guided Navigation Control of an Unmanned Ground Vehicle using Global Positioning Systems and Inertial Navigation Systems
Pooja Velaskar;
Alvaro Vargas-Clara;
Osama Jameel;
Sangram Redkar
International Journal of Electrical and Computer Engineering (IJECE) Vol 4, No 3: June 2014
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (930.252 KB)
This paper demonstrates the use of Global Positioning System (GPS) and Inertial Navigation System (INS) in order to develop an Unmanned Ground Vehicle (UGV) devised to perform a wide variety of outdoor tasks. There are many applications for autonomous UGVs such as tactical and surveillance applications, exploration of areas inaccessible by humans. Capable to navigate to a specific location, and control their motion depending on their surroundings without human intervention. The inertial navigation system makes use of Inertial Measurement Units (IMUs) to measure the change to the UGV's positional parameters, orientation and speed which are continuously monitored and updated. With the advent of GPS, and the positional data from the inertial system the positional information is computed leading to a more accurate control of the UGV; which otherwise suffers from integration drift that occurs with the implementation of inertial systems alone. Autonomous control of the UGV is implemented by coupling GPS sensor and Mission Planner, a tool to map waypoints from Google Maps. Furthermore, system stability and ideal PID (Proportional, Integral and Derivative) values are determined using bicycle modeling analysis to achieve better estimates and control of the UGV.DOI:http://dx.doi.org/10.11591/ijece.v4i3.5183
Wavelet based multicarrier CDMA system
Nasser Hamad;
Maen Takruri;
Mahdi Barhoush
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 4: August 2019
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (562.594 KB)
|
DOI: 10.11591/ijece.v9i4.pp3051-3059
Emerging demands for high data rate services, high user capacity and low power consumption systems are the key driving forces behind the continued technology evolution in wireless communications. Multicarrier Modulation techniques support variety of services requiring different data rates and different QoS (quality of service) levels. Multicarrier CDMA is a wireless communication system that can be seen as a combination of direct sequence CDMA and Orthogonal Frequency Division Multiplexing techniques. The main benefits of this system are its robustness to inter symbol interference and multipath propagation in fading channels. This paper studies and simulates the Discrete Wavelet Transform based Multicarrier CDMA and compares it with the Discrete Fourier Transform based one using different number of sub carriers, and different modulation techniques. The results shows that the Wavelet based system outperforms the Fourier based one since it has lower bit error rate BER performance, lower peak to verage power ratio PAPR and higher user capacity.
Design of Hybrid Solar Wind Energy System in a Microgrid with MPPT Techniques
D. Chinnakullay Reddy;
S. Satyanarayana;
V. Ganesh
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 2: April 2018
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1000.217 KB)
|
DOI: 10.11591/ijece.v8i2.pp730-740
DC Microgrid is one feasible and effective solution to integrate renewable energy sources as well as to supply electricity. This paper proposes a DC microgrid with enhanced Maximum Power Point Tracking (MPPT) techniques for wind and solar energy systems. In this paper, the PV system power generation is enhanced by introducing a two-model MPPT technique that combines incremental conductance and constant voltage MPPT algorithms. Also, for the Wind Energy Conversion System (WECS) with pitch angle controlling technique, an Optimal Power Control MPPT technique is added. The Space Vector Pulse Width Modulation technique is introduced on grid side converter to improve the supply to the grid. The performance of proposed system is analyzed and the efficiency obtained with these methods is enhanced as compared with the previous methods.
Coordinated Placement and Setting of FACTS in Electrical Network based on Kalai-smorodinsky Bargaining Solution and Voltage Deviation Index
Aziz Oukennou;
Abdelhalim Sandali;
Samira Elmoumen
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 6: December 2018
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (813.194 KB)
|
DOI: 10.11591/ijece.v8i6.pp4079-4088
To aid the decision maker, the optimal placement of FACTS in the electrical network is performed through very specific criteria. In this paper, a useful approach is followed; it is based particularly on the use of Kalai-Smorodinsky bargaining solution for choosing the best compromise between the different objectives commonly posed to the network manager such as the cost of production, total transmission losses (Tloss), and voltage stability index (Lindex). In the case of many possible solutions, Voltage Profile Quality is added to select the best one. This approach has offered a balanced solution and has proven its effectiveness in finding the best placement and setting of two types of FACTS namely Static Var Compensator (SVC) and Thyristor Controlled Series Compensator (TCSC) in the power system. The test case under investigation is IEEE-14 bus system which has been simulated in MATLAB Environment.
Effect of Mobility on (I-V) Characteristics of Gaas MESFET
M Azizi;
C Azizi
International Journal of Electrical and Computer Engineering (IJECE) Vol 7, No 1: February 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (475.002 KB)
|
DOI: 10.11591/ijece.v7i1.pp169-175
We present in this paper an analytical model of the current–voltage (I-V) characteristics for submicron GaAs MESFET transistors. This model takes into account the analysis of the charge distribution in the active region and incorporate a field depended electron mobility, velocity saturation and charge build-up in the channel. We propose in this frame work an algorithm of simulation based on mathematical expressions obtained previously. We propose a new mobility model describing the electric field-dependent. The predictions of the simulator are compared with the experimental data [01] and have been shown to be good.
MMFO: modified moth flame optimization algorithm for region based RGB color image segmentation
Varshali Jaiswal;
Varsha Sharma;
Sunita Varma
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 1: February 2020
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (17.547 KB)
|
DOI: 10.11591/ijece.v10i1.pp196-201
Region-based color image segmentation is elementary steps in image processing and computer vision. Color image segmentation is a region growing approach in which RGB color image is divided into the different cluster based on their pixel properties. The region-based color image segmentation has faced the problem of multidimensionality. The color image is considered in five-dimensional problems, in which three dimensions in color (RGB) and two dimensions in geometry (luminosity layer and chromaticity layer). In this paper, L*a*b color space conversion has been used to reduce the one dimension and geometrically it converts in the array hence the further one dimension has been reduced. This paper introduced an improved algorithm MMFO (Modified Moth Flame Optimization) Algorithm for RGB color image Segmentation which is based on bio-inspired techniques for color image segmentation. The simulation results of MMFO for region based color image segmentation are performed better as compared to PSO and GA, in terms of computation times for all the images. The experiment results of this method gives clear segments based on the different color and the different no. of clusters is used during the segmentation process.
The Effective Optimization Methods of Port Activity on the Basis of Algorithmic Model
A. Nyrkov;
A. Shnurenko;
S. Sokolov;
S. Chernyi;
V. Korotkov
International Journal of Electrical and Computer Engineering (IJECE) Vol 7, No 6: December 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (482.063 KB)
|
DOI: 10.11591/ijece.v7i6.pp3578-3582
The article considers the inland waterways (IW) within the international transport corridors as multiphase systems of mass service (SMS) and shows the distinction in calculation of the important indicator of system efficiency - the average total waiting time of vessel service in the serving subsystems, the application of genetic algorithms to increase the efficiency of reloading processes.