cover
Contact Name
Tole Sutikno
Contact Email
ijece@iaesjournal.com
Phone
-
Journal Mail Official
ijece@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Electrical and Computer Engineering
ISSN : 20888708     EISSN : 27222578     DOI : -
International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world.
Articles 6,301 Documents
Evaluation of Flashover Voltage on Hydrophobic Polymer Insulators with Artificial Neural Network L. S. Nasrat; Saleh Aly
International Journal of Electrical and Computer Engineering (IJECE) Vol 2, No 4: August 2012
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (297.854 KB)

Abstract

This paper presents an experimental measurement of ac 50 Hz flashover voltage (kV) of hydrophobic polymer insulators. Hundred thirty five different testing conditions were used to evaluate the electrical performance of hydrophobic surfaces of composite polymer insulators. The study of flashover voltages depend on the silicone rubber (SiR) content (%) in Ethylene propylene diene monomer (EPDM) rubber, water conductivity (µS/cm), volume of water droplet (ml) and number of water droplets on the surface of polymer insulators. Artificial neural network (ANN) is used successfully to model nonlinear functions which are difficult to model using classical methods. ANN can estimate the values of flashover voltage (kV) for different polymer insulators. The proposed network is trained using different environmental wet condition such as; water conductivity, volume of water droplet and number of water droplets on the surfaces of composite different polymer. After training, the network can estimate the flashover voltage for different inputs. A comparison between the laboratory measurements of flashover voltages and computational results of ANN were convergent. The results obtained from applying ANN show that it can be used to model the data with accuracy of 96%. These results prove that ANN can be considered a successful model to evaluate the electrical performance of hydrophobic polymer insulators and predicts the best hydrophobic composite surface that withstands higher flashover voltage under wet contaminated weather condition.DOI:http://dx.doi.org/10.11591/ijece.v2i4.580
Analysis of Time Diversity Gain for Satellite Communication Link based on Ku-Band Rain Attenuation Data Measured in Malaysia Islam Md. Rafiqul; Ali Kadhim Lwas; Mohamed Hadi Habaebi; Md Moktarul Alam; Jalel Chebil; Jit Singh Mandeep; Alhareth Zyoud
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 4: August 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (693.029 KB) | DOI: 10.11591/ijece.v8i4.pp2608-2613

Abstract

This paper reports a study on mitigation of propagation impairments on Earth–space communication links. The study uses time diversity as a technique for mitigating rain propagation impairment in order to rectify rain fade. Rain attenuation time series along earth-to-satellite link were measured for two years period at 12.255 GHz in Malaysia. The time diversity technique was applied on measured rain fade to investigate the level of possible improvement in system. Time diversity gain from measured one-minute rain attenuation for two years period was estimated and significant improvement was observed with different delays of time. These findings will be utilized as a useful tool for link designers to apply time diversity as a rain fade mitigation technique in Earth-satellite communications systems.
A Novel Spectral Clustering based on Local Distribution Jyotsna Kumar Mandal; Parthajit Roy
International Journal of Electrical and Computer Engineering (IJECE) Vol 5, No 2: April 2015
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (244.159 KB) | DOI: 10.11591/ijece.v5i2.pp361-370

Abstract

This paper proposed a novel variation of spectral clustering model based on a novel affinitymetric that considers the distribution of the neighboring points to learn the underlayingstructures in the data set. Proposed affinity metric is calculated using Mahalanobis distancethat exploits the concept of outlier detection for identifying the neighborhoods of the datapoints. RandomWalk Laplacian of the representative graph and its spectra has been consideredfor the clustering purpose and the first k number of eigenvectors have been consideredin the second phase of clustering. The model has been tested with benchmark data and thequality of the output of the proposed model has been tested in various clustering indicesscales.
IoT based heart monitoring and alerting system with cloud computing and managing the traffic for an ambulance in India Khushboo Bhagchandani; D. Peter Augustine
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 6: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (493.606 KB) | DOI: 10.11591/ijece.v9i6.pp5068-5074

Abstract

Global Burden of Disease Report, released in Sept 2017, shows that Cardio- vascular Diseases caused 1.7 million deaths (17.8%) in 2016 and it is the leading cause of deaths in India [1]. According to the Indian Heart Association, 25% of all heart attacks happen under the age of 40. In most cases, the initial heart attacks are often ignored. Even post-diagnosis, as per government data [2], 50% of heart attack cases reach the hospital in more than 400 minutes against the ideal window time of 180 minutes; post which damage is irreversible. The delay is often attributed to delay in reaching a hospital or receiving primary aid. In India, traffic conditions also add to the grimace of the situation. Although the government is taking various measures; a holistic solution is required to minimize the delay at each of the steps like accessing the patient situation, contacting the Medical aid or making available the nearest aid possible. In this paper, we aim at providing the holistic solution using the Internet of Things technology (IOT) along with data analytics. IoT enables real-time capturing and computation of medical data from smart sensors built-in wearable devices. The amalgamation of Internet-based services with Medical Things (Smart sensors) enhance the chances of survival of patients. The proposed system analyses the inputs collected from the sensors fit with the patients prone to cardiovascular diseases to ascertain the emergency situation. In addition, to these data, the system also considers age, maximum and minimum heart rate. Based on computational results received from the input parameters, the system triggers the alert to emergency contacts such as the close relatives of the patient, doctors, the hospitals and nearby ambulance. The proposed system combines with the optimized navigation platform to guide the medical assistance to find the fastest route.
Portable Electrochemical Sensing System Attached to Smartphones and Its Incorporation with Paper-based Electrochemical Glucose Sensor Takuya Fujimoto; Shogo Kawahara; Yukio Fuchigami; Shoji Shimokawa; Yosuke Nakamura; Kenichi Fukayama; Masao Kamahori; Shigeyasu Uno
International Journal of Electrical and Computer Engineering (IJECE) Vol 7, No 3: June 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1099.217 KB) | DOI: 10.11591/ijece.v7i3.pp1423-1429

Abstract

This paper described the development of a small and low cost biosensor consisting of a smartphone-based electrochemical biosensor device and a paper-based biosensor. The device harvested power from the smartphone and transferred data through audio jack. We designed CMOS circuits including a power supply circuit, a potentiostat, and a ΔΣ modulator. The fabrication of a paper-based biosensor was simple: the three electrodes were directly drawn on chromatography paper using a carbon pencil. The paper-based biosensor was low cost, disposable, portable and friendly to the environment. The sensing system was designed to perform the chronoamperometry measurement, and the glucose concentration in a liquid specimen was detected. Results showed that the sensing system was capable of measuring the glucose concentration as precisely as expensive equipments.
Approximating offset Curves using Bezier curves with high accuracy Abedallah Rababah; Moath Jaradat
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 2: April 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (126.532 KB) | DOI: 10.11591/ijece.v10i2.pp1648-1654

Abstract

In this paper, a new method for the approximation of offset curves is presented using the idea of the parallel derivative curves. The best uniform approximation of degree 3 with order 6 is used to construct a method to find the approximation of the offset curves for Bezier curves. The proposed method is based on the best uniform approximation, and therefore; the proposed method for constructing the offset curves induces better outcomes than the existing methods.
Ingenious Method for Conducive Handoff Appliance in Cognitive Radio Networks J. Josephine Dhivya; M. Ramaswami
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 6: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (516.972 KB) | DOI: 10.11591/ijece.v8i6.pp5195-5202

Abstract

Wireless communications deployed in the current epoch claims ceaseless connection among its users thereby leading to the investigation of Cognitive Radio Networks (CRN) which enables to make use of unallocated spectrum optimally and provides uninterrupted connection. Establishing interminable connectivity during the handoff process in spectrum mobility of CRN is a challenging task. This paper elucidates the optimization of handoff process carried out in CRN by incorporating an intelligent method. This includes fuzzy logic wherein the handoff parameters are processed thereby indicating the need of handoff. The proffered method also comprises of a part of genetic algorithm which yields fitness value for reducing the handoff occurrences and enhancing the overall performance of the system is promoted using cuckoo search which decides the mobile node from which the handoff process has to initiate based on the priority generated. This technique ensures that decision is taken ahead of link failure rather than range failure which are the key point in comparison to the existing system. Results obtained through the simulation are satisfactory in terms of delay, throughput, number of failed handoff and handoffs performed in comparison to the existing fuzzy based handoff process in CRN.
An Improved ICI Self Cancellation Scheme for OFDM Systems Under Various Channels A. H. Sharief; M. Satya Sai Ram
International Journal of Electrical and Computer Engineering (IJECE) Vol 6, No 2: April 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1635.551 KB) | DOI: 10.11591/ijece.v6i2.pp690-699

Abstract

Inter Carrier Interference (ICI) is being introduced in OFDM due to the carrier frequency offset (CFO), which will degrade the system performance and efficiency at higher modulation levels and it decreases the performance of power amplifiers. Hence, here in this paper, we introduced a novel ICI reduction algorithms cancellation under the various channel environments such as AWGN, Rayleigh and also Rician. Simulation results have been compared with existing and proposed schemes under these channel specifications and concluded that the Rayleigh has performed far better than the AWGN and Rician channel distributions in terms of Bit Error Rate (BER) and Carrier interference Ration (CIR) performance.
PV-Transformer-Less Inverter Topology for Battery-Equivalent DC Supply from Leakage Current Md. N. H. Khan; Md. T. Anowar; Md. D. Hossen; Md. M. Alam; K. J. Ahmad
International Journal of Electrical and Computer Engineering (IJECE) Vol 6, No 5: October 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (312.925 KB) | DOI: 10.11591/ijece.v6i5.pp2025-2032

Abstract

Solar panels used for electricity generation have got inverters as their core components. Such inverters are made from switching devices coupled with additional circuit component configured in a transformer-less topology in recent reported works. A transformer-less topology suffers from the drawbacks of lack of isolation leading to leakage current flow from various points of it down to ground. The leakage in inverters might be troublesome as it may lead to loss in power, and may cause malfunctioning of analog devices normally used in power inverters. In this work, we identify possible leakage currents in a given transformer-less topology using the circuit analysis principles. The conversion of so obtained leakage currents into a useful DC voltage is carried out in this work. This work focuses on converting leakage current into small DC voltage in the range of ~1.1004V using recently reported rectifier circuits, supplying a load of 200Ω in the mW range. Although small in magnitude, such voltage sources could be used for battery charging purposes or driving small loads.
Low Complexity Adaptive Noise Canceller for Mobile Phones Based Remote Health Monitoring Jafar Ramadhan Mohammed
International Journal of Electrical and Computer Engineering (IJECE) Vol 4, No 3: June 2014
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (435.35 KB)

Abstract

Mobile phones are gaining acceptance to become an effective tool for remote health monitoring. On one hand, during electrocardiographic (ECG) recording, the presence of various forms of noise is inevitable. On the other hand, algorithms for adaptive noise cancellation must be shared by limited computational power offered by the mobile phones. This paper describes a new adaptive noise canceller scheme, with low computational complexity, for simultaneous cancellation of various forms of noise in ECG signal. The proposed scheme is comprised of two stages. The first stage uses an adaptive notch filters, which are used to eliminate power-line interference from the primary and reference input signals, whereas the other noises are reduced using modified LMS algorithm in the second stage. Low power consumption and lower silicon area are key issues in mobile phones based adaptive noise cancellation. The reduction in complexity is obtained by using log-log LMS algorithm for updating adaptive filters in the proposed scheme. A comprehensive complexity and performance analysis between the proposed and traditional schemes are provided.DOI:http://dx.doi.org/10.11591/ijece.v4i3.5534

Page 54 of 631 | Total Record : 6301


Filter by Year

2011 2026


Filter By Issues
All Issue Vol 16, No 1: February 2026 Vol 15, No 6: December 2025 Vol 15, No 5: October 2025 Vol 15, No 4: August 2025 Vol 15, No 3: June 2025 Vol 15, No 2: April 2025 Vol 15, No 1: February 2025 Vol 14, No 6: December 2024 Vol 14, No 5: October 2024 Vol 14, No 4: August 2024 Vol 14, No 3: June 2024 Vol 14, No 2: April 2024 Vol 14, No 1: February 2024 Vol 13, No 6: December 2023 Vol 13, No 5: October 2023 Vol 13, No 4: August 2023 Vol 13, No 3: June 2023 Vol 13, No 2: April 2023 Vol 13, No 1: February 2023 Vol 12, No 6: December 2022 Vol 12, No 5: October 2022 Vol 12, No 4: August 2022 Vol 12, No 3: June 2022 Vol 12, No 2: April 2022 Vol 12, No 1: February 2022 Vol 11, No 6: December 2021 Vol 11, No 5: October 2021 Vol 11, No 4: August 2021 Vol 11, No 3: June 2021 Vol 11, No 2: April 2021 Vol 11, No 1: February 2021 Vol 10, No 6: December 2020 Vol 10, No 5: October 2020 Vol 10, No 4: August 2020 Vol 10, No 3: June 2020 Vol 10, No 2: April 2020 Vol 10, No 1: February 2020 Vol 9, No 6: December 2019 Vol 9, No 5: October 2019 Vol 9, No 4: August 2019 Vol 9, No 3: June 2019 Vol 9, No 2: April 2019 Vol 9, No 1: February 2019 Vol 8, No 6: December 2018 Vol 8, No 5: October 2018 Vol 8, No 4: August 2018 Vol 8, No 3: June 2018 Vol 8, No 2: April 2018 Vol 8, No 1: February 2018 Vol 7, No 6: December 2017 Vol 7, No 5: October 2017 Vol 7, No 4: August 2017 Vol 7, No 3: June 2017 Vol 7, No 2: April 2017 Vol 7, No 1: February 2017 Vol 6, No 6: December 2016 Vol 6, No 5: October 2016 Vol 6, No 4: August 2016 Vol 6, No 3: June 2016 Vol 6, No 2: April 2016 Vol 6, No 1: February 2016 Vol 5, No 6: December 2015 Vol 5, No 5: October 2015 Vol 5, No 4: August 2015 Vol 5, No 3: June 2015 Vol 5, No 2: April 2015 Vol 5, No 1: February 2015 Vol 4, No 6: December 2014 Vol 4, No 5: October 2014 Vol 4, No 4: August 2014 Vol 4, No 3: June 2014 Vol 4, No 2: April 2014 Vol 4, No 1: February 2014 Vol 3, No 6: December 2013 Vol 3, No 5: October 2013 Vol 3, No 4: August 2013 Vol 3, No 3: June 2013 Vol 3, No 2: April 2013 Vol 3, No 1: February 2013 Vol 2, No 6: December 2012 Vol 2, No 5: October 2012 Vol 2, No 4: August 2012 Vol 2, No 3: June 2012 Vol 2, No 2: April 2012 Vol 2, No 1: February 2012 Vol 1, No 2: December 2011 Vol 1, No 1: September 2011 More Issue