cover
Contact Name
Tole Sutikno
Contact Email
ijece@iaesjournal.com
Phone
-
Journal Mail Official
ijece@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Electrical and Computer Engineering
ISSN : 20888708     EISSN : 27222578     DOI : -
International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world.
Articles 6,301 Documents
Supply and demand of ecosystem service provision in relation to dynamics land-cover changes: a remote sensing and geospatial analysis in Sukabumi Regency Fitriani, Ananda; Dimyati, Muhammad; Zulkarnain, Faris
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i5.pp5728-5737

Abstract

The rate of population growth in Sukabumi Regency continues to grow, along with the increasing need for food. This population growth, combined with the constant changes in land cover can reduce the productivity of environment in providing natural capital for food availability. Therefore, this study aimed to examine the condition of ecosystem service provision for a decade in Sukabumi Regency due to changes in land cover. In general, the efficient use of remote sensing method and geographic information systems to monitor ecosystem services had received widespread recognition. Following this scenario, the current study used geospatial analysis with dasymetric method which was integrated with supply and demand formulas for ecosystem services provision, food availability, and remote sensing. Geographic information system was also used for land cover interpretation data. The results showed that three districts in Sukabumi Regency, namely Cicurug, Cibadak, and Cicantayan, had “exceeded” condition when the environmental condition already passed the threshold or were unable to support population's needs. Meanwhile, the other districts have “not exceeded” condition, when the environmental conditions were still able to fulfill the needs of population. Finally, the changes in agricultural land cover had a significant influence on the condition of ecosystem services.
An improved Arabic text classification method using word embedding Sabri, Tarik; Bahassine, Said; El Beggar, Omar; Kissi, Mohamed
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i1.pp721-731

Abstract

Feature selection (FS) is a widely used method for removing redundant or irrelevant features to improve classification accuracy and decrease the model’s computational cost. In this paper, we present an improved method (referred to hereafter as RARF) for Arabic text classification (ATC) that employs the term frequency-inverse document frequency (TF-IDF) and Word2Vec embedding technique to identify words that have a particular semantic relationship. In addition, we have compared our method with four benchmark FS methods namely principal component analysis (PCA), linear discriminant analysis (LDA), chi-square, and mutual information (MI). Support vector machine (SVM), k-nearest neighbors (K-NN), and naive Bayes (NB) are three machine learning based algorithms used in this work. Two different Arabic datasets are utilized to perform a comparative analysis of these algorithms. This paper also evaluates the efficiency of our method for ATC on the basis of performance metrics viz accuracy, precision, recall, and F-measure. Results revealed that the highest accuracy achieved for the SVM classifier applied to the Khaleej-2004 Arabic dataset with 94.75%, while the same classifier recorded an accuracy of 94.01% for the Watan-2004 Arabic dataset.
Hospital quality classification based on quality indicator data during the COVID-19 pandemic Nurhaida, Ida; Dhamanti, Inge; Ayumi, Vina; Yakub, Fitri; Tjahjono, Benny
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i4.pp4365-4375

Abstract

This research aim is to propose a machine learning approach to automatically evaluate or categories hospital quality status using quality indicator data. This research was divided into six stages: data collection, pre-processing, feature engineering, data training, data testing, and evaluation. In 2020, we collected 5,542 data values for quality indicators from 658 Indonesian hospitals. However, we analyzed data from only 275 hospitals due to inadequate submission. We employed methods of machine learning such as decision tree (DT), gaussian naïve Bayes (GNB), logistic regression (LR), k-nearest neighbors (KNN), support vector machine (SVM), linear discriminant analysis (LDA) and neural network (NN) for research archive purposes. Logistic regression achieved a 70% accuracy rate, SVM a 68% accuracy rate, and neural network a 59.34% of accuracy. Moreover, K-nearest neighbors achieved a 54% of accuracy and decision tree a 41% accuracy. Gaussian-NB achieved a 32% accuracy rate. The linear discriminant analysis achieved the highest accuracy with 71%. It can be concluded that linear discriminant analysis is the algorithm suitable for hospital quality data in this research.
Multi-agent cloud based license plate recognition system Ben Laoula, El Mehdi; Elfahim, Omar; El Midaoui, Marouane; Youssfi, Mohamed; Bouattane, Omar
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i4.pp4590-4601

Abstract

This paper presents a multi-agent license plate recognition system, specifically designed to address the diverse and challenging nature of license plates. Utilizing a multi-agent architecture with agents operating in individual Docker containers and orchestrated by Kubernetes, the system demonstrates remarkable adaptability and scalability. It leverages advanced neural networks, trained on a comprehensive dataset, to accurately identify various license plate types under dynamic conditions. The system’s efficacy is showcased through its three-layered approach, encompassing data collection, processing, and result compilation, significantly outperforming traditional license plate recognition (LPR) systems. This innovation not only marks a technological leap in license plate recognition but also offers strategic solutions for enhancing traffic management and smart city infrastructure globally.
A semantic similarity search engine for movies Mustafa, Ahmad; Mheidat, Hammam; Shatnawi, Adam
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 6: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i6.pp7137-7144

Abstract

Semantic similarity has been gaining traction in the field of natural language processing. It is a measure of how similar two pieces of text are in terms of their meaning. It can be used to improve search engine results. We propose a deep learning-based approach to build a semantic similarity search engine for movies based on a movie summary. Filmmakers can gain insight into audience preferences and trends, allowing them to create more engaging and successful films. The dataset used in this study was gathered from internet movie database (IMDb), it includes movie summaries along with their corresponding name movies. The test dataset was generated using ChatGPT to be very close to human input. The universal sentence encoder (USE) model presented promising results in semantic similarity, the model results show that for the top 5 similar movies, the model returned 176 out of 300 movies (58.6%). For the top 10 similar movies, the model returned 211 out of 300 movies (70.3%). Additionally, for the top 15 similar movies, the model returned 229 out of 300 movies (76.3%). And, for the top 20 similar movies, the model returned 249 of 300 movies (83%). This method can be applied to movie recommendation systems or to organize films in a collection automatically.
Image compression and reconstruction using improved Stockwell transform for quality enhancement Babu, Padigala Prasanth; Prasad, Talari Jayachandra; Soundararajan, Kadambi
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i2.pp1583-1593

Abstract

Image compression is an important stage in picture processing since it reduces the data extent and promptness of image diffusion and storage, whereas image reconstruction helps to recover the original information that was communicated. Wavelets are commonly cited as a novel technique for image compression, although the production of waves proceeding smooth areas with the image remains unsatisfactory. Stockwell transformations have been recently entered the arena for image compression and reconstruction operations. As a result, a new technique for image compression based on the improved Stockwell transform is proposed. The discrete cosine transforms, which involves bandwidth partitioning is also investigated in this work to verify its experimental results. Wavelet-based techniques such as multilevel Haar wavelet, generic multiwavelet transform, Shearlet transform, and Stockwell transforms were examined in this paper. The MATLAB technical computing language is utilized in this work to implement the existing approaches as well as the suggested improved Stockwell transform. The standard images mostly used in digital image processing applications, such as Lena, Cameraman and Barbara are investigated in this work. To evaluate the approaches, quality constraints such as mean square error (MSE), normalized cross-correlation (NCC), structural content (SC), peak noise ratio, average difference (AD), normalized absolute error (NAE) and maximum difference are computed and provided in tabular and graphical representations.
Exploring the frontiers of trajectory outlier detection: an in-depth review and comparative analysis Chakri, Sana; Mouhni, Naoual; Ennaama, Faouzia
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i5.pp5984-5997

Abstract

This paper provides a review and comparative analysis of trajectory outlier detection methods. It presents the definition of outliers in trajectory data and the existing types to further examine the advanced approaches. Basic steps for detecting an outlier, which include data preprocessing, feature extraction, modeling, and similar, have been presented. Moreover, advanced methods such as autoencoders and the use of deep learning for outlier detection have been explored. In the end, this paper evaluates the techniques and compares them using common metrics, mainly focusing on the techniques based on autoencoders or deep learning. It covers applications in real life and practice along with any limitations, challenges, and perspective ideas for the future. Ultimately, it can be a useful resource for expanding the understanding of domain researchers and practitioners.
Indonesian multilabel classification using IndoBERT embedding and MBERT classification Nabiilah, Ghinaa Zain; Alam, Islam Nur; Purwanto, Eko Setyo; Hidayat, Muhammad Fadlan
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i1.pp1071-1078

Abstract

The rapid increase in social media activity has triggered various discussion spaces and information exchanges on social media. Social media users can easily tell stories or comment on many things without limits. However, this often triggers open debates that lead to fights on social media. This is because many social media users use toxic comments that contain elements of racism, radicalism, pornography, or slander to argue and corner individuals or groups. These comments can easily spread and trigger users vulnerable to mental disorders due to unhealthy and unfair debates on social media. Thus, a model is needed to classify comments, especially toxic ones, in Indonesian. Transformer-based model development and natural language processing approaches can be applied to create classification models. Some previous research related to the classification of toxic comments has been done, but the classification results of the model still require exploration to get optimal results. So, this research uses the proposed model by using different pre-trained models at the embedding and classification stages, in the embedding stage using Indonesia bidirectional encoder representations from transformers (IndoBERT), and classification using multilingual bidirectional encoder representations from transformers (MBERT). The proposed model provides optimal results with an F1 value of 0.9032.
Robust identification of users by convolutional neural network in MATLAB and Raspberry Pi Murillo, Paula Useche; Jiménez-Moreno, Robinson; Baquero, Javier Eduardo Martinez
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i4.pp3876-3884

Abstract

The following article presents the development of an algorithm embedded in a Raspberry Pi 3B board, where a user identification was made, using the convolutional neural network (CNN) for 5 predefined users, with the option of loading remotely a new network for a new user. Comparatively, the same application was programmed in MATLAB programming software to evaluate the results and identify the advantages between them. Networks were trained for 5 different users, using the Caffe library on the Raspberry Pi, and the MATLAB neural network package on the computer. Where it was found that the training made by Caffe on an embedded system is much slower and less efficient than the ones performed in MATLAB, obtaining less than 55% accuracy with Caffe networks and more than 90% with MATLAB networks, training with the same number of samples, the same architecture, and the same database. Finally, the accuracy obtained through confusion matrix is over 88% in each case of users identification.
Multi-objective optimal reconfiguration of distribution networks using a novel meta-heuristic algorithm Dehghany, Negar; Asghari, Rasool
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i4.pp3557-3569

Abstract

Reconfiguration strategies are used to reduce power losses and increase the reliability of the distribution systems. Since the optimal reconfiguration problem is a multi-objective optimization problem with non-convex functions and constraints, meta-heuristic algorithms are the most suitable choice for the problem-solving approach. One of the new meta-heuristic algorithms that exhibits excellent performance in solving multi-objective problems is the wild mice colony (WMC) algorithm, which is implemented based on aggressive and mating strategies of wild mice. In this paper, the distribution network reconfiguration problem is solved to reduce power losses, improve reliability, and increase the voltage profile of network buses using the WMC algorithm. In addition, the obtained results are compared with conventional multi-objective algorithms. The optimal reconfiguration problem is applied to the IEEE 33-bus and 69-bus test systems. The comparative study confirms the superior performance of the proposed algorithm in terms of convergence speed, execution time, and the final solution.

Filter by Year

2011 2026


Filter By Issues
All Issue Vol 16, No 1: February 2026 Vol 15, No 6: December 2025 Vol 15, No 5: October 2025 Vol 15, No 4: August 2025 Vol 15, No 3: June 2025 Vol 15, No 2: April 2025 Vol 15, No 1: February 2025 Vol 14, No 6: December 2024 Vol 14, No 5: October 2024 Vol 14, No 4: August 2024 Vol 14, No 3: June 2024 Vol 14, No 2: April 2024 Vol 14, No 1: February 2024 Vol 13, No 6: December 2023 Vol 13, No 5: October 2023 Vol 13, No 4: August 2023 Vol 13, No 3: June 2023 Vol 13, No 2: April 2023 Vol 13, No 1: February 2023 Vol 12, No 6: December 2022 Vol 12, No 5: October 2022 Vol 12, No 4: August 2022 Vol 12, No 3: June 2022 Vol 12, No 2: April 2022 Vol 12, No 1: February 2022 Vol 11, No 6: December 2021 Vol 11, No 5: October 2021 Vol 11, No 4: August 2021 Vol 11, No 3: June 2021 Vol 11, No 2: April 2021 Vol 11, No 1: February 2021 Vol 10, No 6: December 2020 Vol 10, No 5: October 2020 Vol 10, No 4: August 2020 Vol 10, No 3: June 2020 Vol 10, No 2: April 2020 Vol 10, No 1: February 2020 Vol 9, No 6: December 2019 Vol 9, No 5: October 2019 Vol 9, No 4: August 2019 Vol 9, No 3: June 2019 Vol 9, No 2: April 2019 Vol 9, No 1: February 2019 Vol 8, No 6: December 2018 Vol 8, No 5: October 2018 Vol 8, No 4: August 2018 Vol 8, No 3: June 2018 Vol 8, No 2: April 2018 Vol 8, No 1: February 2018 Vol 7, No 6: December 2017 Vol 7, No 5: October 2017 Vol 7, No 4: August 2017 Vol 7, No 3: June 2017 Vol 7, No 2: April 2017 Vol 7, No 1: February 2017 Vol 6, No 6: December 2016 Vol 6, No 5: October 2016 Vol 6, No 4: August 2016 Vol 6, No 3: June 2016 Vol 6, No 2: April 2016 Vol 6, No 1: February 2016 Vol 5, No 6: December 2015 Vol 5, No 5: October 2015 Vol 5, No 4: August 2015 Vol 5, No 3: June 2015 Vol 5, No 2: April 2015 Vol 5, No 1: February 2015 Vol 4, No 6: December 2014 Vol 4, No 5: October 2014 Vol 4, No 4: August 2014 Vol 4, No 3: June 2014 Vol 4, No 2: April 2014 Vol 4, No 1: February 2014 Vol 3, No 6: December 2013 Vol 3, No 5: October 2013 Vol 3, No 4: August 2013 Vol 3, No 3: June 2013 Vol 3, No 2: April 2013 Vol 3, No 1: February 2013 Vol 2, No 6: December 2012 Vol 2, No 5: October 2012 Vol 2, No 4: August 2012 Vol 2, No 3: June 2012 Vol 2, No 2: April 2012 Vol 2, No 1: February 2012 Vol 1, No 2: December 2011 Vol 1, No 1: September 2011 More Issue