cover
Contact Name
Tole Sutikno
Contact Email
ijece@iaesjournal.com
Phone
-
Journal Mail Official
ijece@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Electrical and Computer Engineering
ISSN : 20888708     EISSN : 27222578     DOI : -
International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world.
Articles 6,301 Documents
The advances in natural language processing technology and its impact on modern society Borisova, Nadezhda; Karashtranova, Elena; Atanasova, Irena
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i2.pp2325-2333

Abstract

A wide range of information, such as books, news, reports, and other content, is constantly being produced, much of which is available online. Machine translation, spam detection, natural language interfaces, and question-answering applications have become increasingly popular. Natural language processing (NLP) is at the core of the automatic retrieval of information stored on computers. This article discusses NLP and its applications in daily activities. It covers the main stages of NLP and provides examples of its advances in various higher-level tasks. The objective is to highlight the significance of NLP in processing online content and in efficient interactions between humans and computers across various applications. As an essential element of artificial intelligence, NLP provides solutions for real-world problems and has the potential to transform the way companies operate.
Multi-robot architecture based on hybridized blockchain model Kumar, Rahul Harish; Subramanian, Gopalakrishnan Muthu; Bailuguttu, Sahana
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i2.pp1511-1520

Abstract

Multi-robot systems (MRS) are groups of robots that coordinate to complete a given task. In communication-based systems, the integrity of the information shared between robots becomes highly important as any security threat due to a malicious node in the system can cause a chain reaction to compromise the entire system. This paper proposes a hybridized blockchain model-based architecture (HBMA) built on robot operating system (ROS) which offers a semi-decentralized environment into which any communication-based algorithm can be plugged in. A security monitoring system is also provided with the architecture that identifies and shuts down malicious robots while also sending out alerts about the threat. This architecture is used to create secured, coupled approaches to localization of multi-robots and multi-robot path planning. This approach is validated on both physical robots and simulations run on ROS.
A longitudinal network analysis of research trends and policy implications: southernmost of Thailand case study Rumdon, Komgrit; Longha, Kamonthip; Kaewsuwan, Nawapon; Matcha, Wannisa
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i2.pp2109-2127

Abstract

The government funds research projects to address problems, advance knowledge, and support national development. Data repositories are often used to store this research information; however, such information is not optimally used when making the decision. This is particularly important, especially in the areas that require extensive effort and budget allocation to drive development, such as the southernmost provinces of Thailand. This area has been in a violent situation for more than twenty years, leading to poor education, economic challenges, and many more. This study aims to analyze the trends in research topics on these provinces over 30 years (1982–2020) using epistemic network analysis (ENA) on data from the Southern Border Provinces Research Database (SOREDA). Key findings showed a prolonged focus on “education” and “Islamic studies,” reflecting steady government support but raising concerns about its effectiveness. Another important point was that conflict management research arose in response to the surge in violence in 2004 and prolonged existing. The current trending research focused on local–based capital and how it is used to drive society and the economy, such as through tourism. These highlight evolving priorities in addressing the region's challenges and opportunities.
Handwritten text recognition system using Raspberry Pi with OpenCV TensorFlow Alsayaydeh, Jamil Abedalrahim Jamil; Jie, Tommy Lee Chuin; Bacarra, Rex; Ogunshola, Benny; Yaacob, Noorayisahbe Mohd
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i2.pp2291-2303

Abstract

Handwritten text recognition (HTR) technology has brought about a revolution in the way handwritten data is converted and analyzed. This proposed work focuses on developing a HTR system using deep learning through advanced deep learning architecture and techniques. The aim is to create a model for real-time analysis and detection of handwritten texts. The proposed deep learning architecture that is convolutional neural networks (CNNs), is investigated and implemented with tools like OpenCV and TensorFlow. The model is trained on large handwritten datasets to enhance recognition accuracy. The system’s performance is evaluated based on accuracy, precision, real-time capabilities, and potential for deployment on platforms like Raspberry Pi. The actual outcome is a robust HTR system that can convert handwritten text to digital formats accurately. The developed system has achieved a high accuracy rate of 91.58% in recognizing English alphabets and digits and outperformed other models with 81.77% mAP, 78.85% precision, 79.32% recall, 79.46% F1-Score, and 82.4% receiver operating characteristic (ROC). This research contributes to the advancement of HTR technology by enhancing its precision and utility.
A new data imputation technique for efficient used car price forecasting Bridge-Nduwimana, Charlène Béatrice; Ouaazizi, Aziza El; Benyakhlef, Majid
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i2.pp2364-2371

Abstract

This research presents an innovative methodology for addressing missing data challenges, specifically applied to predicting the resale value of used vehicles. The study integrates a tailored feature selection algorithm with a sophisticated imputation strategy utilizing the HistGradientBoostingRegressor to enhance efficiency and accuracy while maintaining data fidelity. The approach effectively resolves data preprocessing and missing value imputation issues in complex datasets. A comprehensive flowchart delineates the process from initial data acquisition and integration to ultimate preprocessing steps, encompassing feature engineering, data partitioning, model training, and imputation procedures. The results demonstrate the superiority of the HistGradientBoostingRegressor for imputation over conventional methods, with boosted models eXtreme gradient boosting (XGBoost) regressor and gradient boosting regressor exhibiting exceptional performance in price forecasting. While the study’s potential limitations include generalizability across diverse datasets, its applications include enhancing pricing models in the automotive sector and improving data quality in large-scale market analyses.
Kafka-machine learning based storage benchmark kit for estimation of large file storage performance Rao, Sanjay Kumar Naazre Vittal; Kumar, Anitha Chikkanayakanahalli Lokesh; Kamble, Subhash
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i2.pp1990-1999

Abstract

Efficient storage and maintenance of big data is important with respect to assuring accessibility and cost-friendliness to improve risk management and achieve an effective comprehension of the user requirements. Managing the extensive data volumes and optimizing storage performance poses a significant challenge. To address this challenge, this research proposes the Kafka-machine learning (ML) based storage benchmark kit (SBK) designed to evaluate the performance of the file storage system. The proposed method employs Kafka-ML and a drill-down feature to optimize storage performance and enhance throughput. Kafka-ML-based SBK has the capability to optimize storage efficiency and system performance through space requirements and enhance data handling. The drill-down search feature precisely contributes through reducing disk space usage, enabling faster data retrieval and more efficient real-time processing within the Kafka-ML framework. The SBK aims to provide transparency and ease of utilization for benchmarking purposes. The proposed method attains maximum throughput and minimum latency of 20 MBs and 70 ms, respectively on the number of data bytes is 10, as opposed to the existing method SBK Kafka.
Low-dose computed tomography image denoising using graph wavelet transform with optimal base Setiawan, Iwan; Hidayat, Rachmat; Najar, Abdul Mahatir; Jaya, Agus Indra; Rosiyadi, Didi
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i2.pp1696-1708

Abstract

Noise in electronic components of computed tomography (CT) detectors behaves like a virus that infects visual quality of CT scans and might distort clinical diagnosis. Modern CT detector technology incorporates high-quality electronic components in conjunction with signal and image processing to ensure optimal image quality while retaining benign doses of x-rays. In this study, a new strategy in signal and image processing directions is proposed by finding the most optimal wavelet base for denoising low-dose CT scan data. The process begins by selecting the appropriate wavelet bases for CT image denoising, followed by a wavelet decomposition, thresholding, and reconstruction. Other methods, such as graph wavelet and learning-based, are used to assess the consistency of the outcomes. The wavelet base of biorthogonal 5.5 achieves the highest optimum performance for CT image denoising. Meanwhile, the Daubechies wavelet base is inconsistent and performs poorly compared to the optimum base. This research highlights the importance of wavelet properties such as orthogonality, regularity, and the number of vanishing moments in selecting an appropriate wavelet basis for noise reduction in CT images.
A constrained convolutional neural network with attention mechanism for image manipulation detection Hamidja, Kamagate Beman; Tokpa, Fatoumata Wongbé Rosalie; Mosan, Vincent; Oumtanaga, Souleymane
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i2.pp2304-2313

Abstract

The information disseminated by online media is often presented in the form of images, in order to quickly captivate readers and increase audience ratings. However, these images can be manipulated for malicious purposes, such as influencing public opinion, undermining media credibility, disrupting democratic processes or creating conflict within society. Various approaches, whether relying on manually developed features or deep learning, have been devised to detect falsified images. However, they frequently prove less effective when confronted with widespread and multiple manipulations. To address this challenge, in our study, we have designed a model comprising a constrained convolution layer combined with an attention mechanism and a transfer learning ResNet50 network. These components are intended to automatically learn image manipulation features in the initial layer and extract spatial features, respectively. It makes possible to detect various falsifications with much more accuracy and precision. The proposed model has been trained and tested on real datasets sourced from the literature, which include MediaEval and Casia. The obtained results indicate that our proposal surpasses other models documented in the literature. Specifically, we achieve an accuracy of 87% and a precision of 93% on the MediaEval dataset. In comparison, the performance of methods from the literature on the same dataset does not exceed 84% for accuracy and 90% for precision.
Key management for bitcoin transactions using cloud based key splitting technique Buchade, Amar; Sharma, Nakul; Jadhav, Varsha; Nalavade, Jagannath; Sapate, Suhas; Sajjan, Rajani
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i2.pp1861-1867

Abstract

Bitcoin wallet contains the information which is required for making transactions. To access this information, user maintains the secret key. Anyone with the secret key can access the records stored in bitcoin wallet. The compromise of the key such as physical theft, side channel attack, sybil attack, DoS attack and weak encryption can cause the access of transactional details and bitcoins stored in the wallet to the attacker. The cloud-based key split up technique is proposed for securing the key in blockchain technology. The key shares are distributed across virtual machines in cloud computing. The approach is compared to the existing key management approaches such as local key storage, keys derived from password and hosted wallet. It is observed that our approach is most suitable among the other key management approaches.
Optimization techniques applied on image segmentation process by prediction of data using data mining techniques Muniappan, Ramaraj; Selvaraj, Srividhya; Vanathi Gurusamy, Rani; Thiyagarajan, Velumani; Sabareeswaran, Dhendapani; Prasanth, David; Krithika, Varadharaj; Ilango, Bhaarathi; Subramanian, Dhinakaran
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i2.pp2161-2171

Abstract

The research work presents an enhanced method that combines rule-based color image segmentation with fuzzy density-based spatial clustering of applications with noise (FDBSCAN). This technique enhances super-pixel robustness and improves overall image quality, offering a more effective solution for image segmentation. The study is specifically applied to the challenging and novel task of predicting the age of tigers from camera trap images, a critical issue in the emerging field of wildlife research. The task is fraught with challenges, particularly due to variations in image scale and thickness. Proposed methods demonstrate that significant improvements over existing techniques through the broader set of parameters of min and max to achieve superior segmentation results. The proposed approach optimizes segmentation by integrating fuzzy clustering with rule-based techniques, leading to improved accuracy and efficiency in processing color images. This innovation could greatly benefit further research and applications in real-world scenarios. Additionally, the scale and thickness variations of the present barracuda panorama knowledge base offer many advantages over other enhancement strategies that have been proposed for the use of these techniques. The experiments show that the proposed algorithm can utilize a wider range of parameters to achieve better segmentation results.

Filter by Year

2011 2026


Filter By Issues
All Issue Vol 16, No 1: February 2026 Vol 15, No 6: December 2025 Vol 15, No 5: October 2025 Vol 15, No 4: August 2025 Vol 15, No 3: June 2025 Vol 15, No 2: April 2025 Vol 15, No 1: February 2025 Vol 14, No 6: December 2024 Vol 14, No 5: October 2024 Vol 14, No 4: August 2024 Vol 14, No 3: June 2024 Vol 14, No 2: April 2024 Vol 14, No 1: February 2024 Vol 13, No 6: December 2023 Vol 13, No 5: October 2023 Vol 13, No 4: August 2023 Vol 13, No 3: June 2023 Vol 13, No 2: April 2023 Vol 13, No 1: February 2023 Vol 12, No 6: December 2022 Vol 12, No 5: October 2022 Vol 12, No 4: August 2022 Vol 12, No 3: June 2022 Vol 12, No 2: April 2022 Vol 12, No 1: February 2022 Vol 11, No 6: December 2021 Vol 11, No 5: October 2021 Vol 11, No 4: August 2021 Vol 11, No 3: June 2021 Vol 11, No 2: April 2021 Vol 11, No 1: February 2021 Vol 10, No 6: December 2020 Vol 10, No 5: October 2020 Vol 10, No 4: August 2020 Vol 10, No 3: June 2020 Vol 10, No 2: April 2020 Vol 10, No 1: February 2020 Vol 9, No 6: December 2019 Vol 9, No 5: October 2019 Vol 9, No 4: August 2019 Vol 9, No 3: June 2019 Vol 9, No 2: April 2019 Vol 9, No 1: February 2019 Vol 8, No 6: December 2018 Vol 8, No 5: October 2018 Vol 8, No 4: August 2018 Vol 8, No 3: June 2018 Vol 8, No 2: April 2018 Vol 8, No 1: February 2018 Vol 7, No 6: December 2017 Vol 7, No 5: October 2017 Vol 7, No 4: August 2017 Vol 7, No 3: June 2017 Vol 7, No 2: April 2017 Vol 7, No 1: February 2017 Vol 6, No 6: December 2016 Vol 6, No 5: October 2016 Vol 6, No 4: August 2016 Vol 6, No 3: June 2016 Vol 6, No 2: April 2016 Vol 6, No 1: February 2016 Vol 5, No 6: December 2015 Vol 5, No 5: October 2015 Vol 5, No 4: August 2015 Vol 5, No 3: June 2015 Vol 5, No 2: April 2015 Vol 5, No 1: February 2015 Vol 4, No 6: December 2014 Vol 4, No 5: October 2014 Vol 4, No 4: August 2014 Vol 4, No 3: June 2014 Vol 4, No 2: April 2014 Vol 4, No 1: February 2014 Vol 3, No 6: December 2013 Vol 3, No 5: October 2013 Vol 3, No 4: August 2013 Vol 3, No 3: June 2013 Vol 3, No 2: April 2013 Vol 3, No 1: February 2013 Vol 2, No 6: December 2012 Vol 2, No 5: October 2012 Vol 2, No 4: August 2012 Vol 2, No 3: June 2012 Vol 2, No 2: April 2012 Vol 2, No 1: February 2012 Vol 1, No 2: December 2011 Vol 1, No 1: September 2011 More Issue