cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Power Electronics and Drive Systems (IJPEDS)
ISSN : -     EISSN : 20888694     DOI : -
Core Subject : Engineering,
International Journal of Power Electronics and Drive Systems (IJPEDS, ISSN: 2088-8694, a SCOPUS indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, induction motor drives, synchronous motor drives, permanent magnet motor drives, switched reluctance motor and synchronous reluctance motor drives, ASDs (adjustable speed drives), multi-phase machines and converters, applications in motor drives, electric vehicles, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
Arjuna Subject : -
Articles 60 Documents
Search results for , issue "Vol 12, No 3: September 2021" : 60 Documents clear
Simplified cascade multiphase DC-DC buck power converter for low voltage large current applications: part I --- steady-state analysis Anand Bannet Ganesen; Nungky Prameswari; Falah Kharisma Nuraziz; Arwindra Rizqiawan; Pekik Argo Dahono
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1708-1719

Abstract

This paper presents a new simplified cascade multiphase DC-DC buck power converter suitable for low voltage and large current applications. Cascade connection enables very low voltage ratio without using very small duty cycles nor transformers. Large current with very low ripple content is achieved by using the multiphase technique. The proposed converter needs smaller number of components compared to conventional cascade multiphase DC-DC buck power converters. This paper also presents useful analysis of the proposed DC-DC buck power converter with a method to optimize the phase and cascade number. Simulation and experimental results are included to verify the basic performance of the proposed DC-DC buck power converter.
A comparative study for the performance operation of electric machine based on conventional and D-Q theories Sanabel M. AL hajzber; Ahmed J. Ali; Alya H. AL-Rifaie; Abdullah K. Shanshal
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1304-1314

Abstract

Induction motors are used widely in industrial applications, thanks to their high efficiency and reliability which nominates it as a good machine used in various application. Based on the application and accuracy, modeling processes of electric machines are carried out using different mathematical methods. The most common method for modeling electrical machines is based on solution of differential equations of voltages as well as calculating the time varying self-inductances and the mutual inductances based on the rotor angle. One of the most important features of this method is that the inductance is no long depend on the time varying voltage, which is the major problem facing the conventional model. But the D-Q modeling approach has several problems, the greatest of which is that the voltage applied on stator must be balanced in addition to the fact that the winding are sinusoidal distributed form. Herein this research is focused on build two models of a 3-Φ induction motor (IM) based on the two analytical approaches and compare them to clarify the difference. The results have been shown that the conventional model gives more accurate response when it is applied in both normal and upnormal operation. MATLAB/Simulink softare is used to construct the D-Q and classical abc IM models.
The new approach minimizes harmonics in a single-phase three-level NPC 400 Hz converter for airplanes Do Ngoc Quy; Do Ba Phu; Nguyen Kien Trung
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1738-1750

Abstract

This paper provides a new approach to reducing high-order harmonics in 400 Hz inverter using a three-level neutral-point clamped (NPC) converter. A voltage control loop using the harmonic compensation combined with NPC clamping diode control technology. The capacitor voltage imbalance also causes harmonics in the output voltage. For 400 Hz inverter, maintain a balanced voltage between the two input (direct current) (DC) capacitors is difficult because the pulse width modulation (PWM) modulation frequency ratio is low compared to the frequency of the output voltage. A method of determining the current flowing into the capacitor to control the voltage on the two balanced capacitors to ensure fast response reversal is also given in this paper. The combination of a high-harmonic resonator controller and a neutral-point voltage controller working together on the 400 Hz NPC inverter structure is given in this paper.
Efficiency improvement of dual three-phase permanent magnet synchronous motor using modified switching table DTC for electric ship propulsion Aziz El Afia; Mhammed Hasoun; Mohamed Khafallah; Karim Benkirane
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1315-1325

Abstract

A direct torque control using a classical switching- table ST-DTC can be used to control the torque and thus the speed of Dual Three-Phase Permanent Magnet Synchronous Motor (DTP-PMSM). The principle is based on direct application of control sequence by using two hysteresis regulators and a switching table. A large stator current containing low order harmonics is produced during the application of the classic ST-DTC technique, this leads to higher losses affecting the efficiency of the machine. To allow a reduction of these harmonics a modified switching-table approach based DTC technique is examined. Indeed, an improved ST-DTC strategy, which consist of replacing the vectors of the classical table with synthetic vectors, is discussed. The simulation results confirm the validity of the selected strategy.
Advanced control strategy of DFIG during symmetrical grid fault Tariq Riouch; Cristian Nichita
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1422-1430

Abstract

This article proposes a novel scheme to improve the doubly-fed induction generator (DFIG) behavior during grid fault. The DFIG’s are sensitives to voltage variations when abrupt variations of the wind velocity arrive. For enhancing DFIG behavior, protecting the converters, and smoothing the fluctuations power output of the DFIG under sag voltage; a novel hybrid energy storage system scheme and its controller are proposed. The main advantages of our approach are a faster response and suppressing overvoltage on DC bus and globally less stress in the storage system. The control structure decreases the tiredness on the battery and restores the DC bus voltage rapidly, globally the battery system operating time increases. The results obtained by simulations in MATLAB validate the benefits of the suggested control.
In-depth perception of dynamic inductive wireless power transfer development: a review Nadia Nazieha Nanda; Mohd Shahrin Abu Hanifah; Siti Hajar Yusoff; Nadirah Abdul Rahim; Mashkuri Yaacob; Nurul Fadzlin Hasbullah
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1459-1471

Abstract

The emerging of inductive wireless power transfer (IWPT) technology provides more opportunities for the electric vehicle (EV) battery to have a better recharging process. With the development of IWPT technology, various way of wireless charging of the EV battery is proposed in order to find the best solution. To further understand the fundamentals of the IWPT system itself, an ample review is done. There are different ways of EV charging which are static charging (wired), static wireless charging (SWC) and dynamic wireless charging (DWC). The review starts with a brief comparison of static charging, SWC and DWC. Then, in detailed discussion on the fundamental concepts, related laws and equations that govern the IWPT principle are also included. In this review, the focus is more on the DWC with a little discussion on static charging and SWC to ensure in-depth understanding before one can do further research about the EV charging process. The in-depth perception regarding the development of DWC is elaborated together with the system architecture of the IWPT and DWC system and the different track versions of DWC, which is installable to the road lane.
Asymmetrical four-wire cascaded h-bridge multi-level inverter based shunt active power filter supplied by a photovoltaic source Kamel Saleh; Omar Mahmoud
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1673-1686

Abstract

This paper presents a novel shunt active power filter (SAPF). The power converter that is used in this SAPF is constructed from a four-leg asymmetric multi-level cascaded H-bridge (CHB) inverter that is fed from a photovoltaic source. A three-dimensional space vector modulation (3D-SVPWM) technique is adopted in this work. The multi-level inverter can generate 27-level output with harmonic content is almost zero. In addition to the capability to inject reactive power and mitigating the harmonics, the proposed SAPF has also, the ability to inject real power as it is fed from a PV source. Moreover, it has a fault-tolerant capability that makes the SAPF maintaining its operation under a loss of one leg of the multi-level inverter due to an open-circuit fault without any degradation in the performance. The proposed SAPF is designed and simulated in MATLAB SIMULINK using a single nonlinear load and the results have shown a significant reduction in total harmonics distortion (THD) of the source current under the normal operating condition and post a failure in one phase of the SAPF. Also, similar results are obtained when IEEE 15 bus network is used.
Comparison of PV panels MPPT techniques applied to solar water pumping system Islam K. Abdul-Razzaq; Mohamed M. Fahim Sakr; Yasir G. Rashid
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1813-1822

Abstract

This paper deals with an advanced design for a pump powered by solar energyto supply agricultural lands with water and also the maximum power point is used to extract the maximum value of the energy available inside the solar panels and comparing between techniques MPPT such as Incremental conductance, perturb & observe, fractional short current circuit, and fractional open voltage circuit to find the best technique among these. The solar system is designed with main parts: photovoltaic (PV) panel, direct current/direct current (DC/DC) converter, inverter, filter, and in addition, the battery is used to save energy in the event that there is an increased demand for energy and not to provide solar radiation, as well as saving energy in the case of generation more than demand. This work was done using the matrix laboratory (MATLAB) simulink program.
Performance improvement of decentralized control for bidirectional converters in a DC micro-grid Seyed Mojtaba Abbasi; Mehdi Nafar; Mohsen Simab
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1505-1520

Abstract

In this paper, using a neural controller and a genetic optimization algorithm to control the voltage as well as, control the frequency of the grid along with the management of the reactive power of the micro-grid to control the output power during islanding using Simultaneous bilateral power converters with voltage/frequency droop strategy and optimization of PI coefficients of parallel power converters by genetic-neural micro-grid algorithm to suppress AC side-current flow that increases stability and improvement of conditions frequency and voltage are discussed. Given the performance of the micro-grid in two simulation scenarios, namely transition from on-grid to off-grid, the occurrence of a step change in load in island mode as well as return to working mode is connected. The ability to detect the robust performance and proper performance of two-level neural controller. The controller performance time was also very good, indicating the appropriate features of the method used to design the controller, namely two-level neural, genetics. The main advantage of this method is its simplicity of design. The method used is also efficient and resistant to changes in the system, which results from the simulations.
Improved 25-level inverter topology with reduced part count for PV grid-tie applications Radouane Majdoul; Abelwahed Touati; Abderrahmane Ouchatti; Abderrahim Taouni; Elhassane Abdelmounim
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1687-1698

Abstract

A new bidirectional multilevel inverter topology with a high number of voltage levels with a very reduced number of power components is proposed in this paper. Only TEN power switches and four asymmetric DC voltage sources are used to generate 25 voltage levels in this new topology. The proposed multilevel converter is more suitable for e-mobility and photovoltaic applications where the overall energy source can be composed of a few units/associations of several basic source modules. Several benefits are provided by this new topology: Highly sinusoidal current and voltage waveforms, low Total Harmonic Distortion, very low switching losses, and minimum cost and size of the device. For optimum control of this 25-level voltage inverter, a special Modified Hybrid Modulation technique is performed. The proposed 25-level inverter is compared to various topologies published recently in terms of cost, the number of active power switches, clamped diodes, flying capacitors, DC floating capacitors, and the number of DC voltage sources. This comparison clearly shows that the proposed topology is cost-effective, compact, and very efficient. The effectiveness and the good performance of the proposed multilevel power converter (with and without PWM control) are verified and checked by computational simulations.

Filter by Year

2021 2021


Filter By Issues
All Issue Vol 16, No 4: December 2025 Vol 16, No 3: September 2025 Vol 16, No 2: June 2025 Vol 16, No 1: March 2025 Vol 15, No 4: December 2024 Vol 15, No 3: September 2024 Vol 15, No 2: June 2024 Vol 15, No 1: March 2024 Vol 14, No 4: December 2023 Vol 14, No 3: September 2023 Vol 14, No 2: June 2023 Vol 14, No 1: March 2023 Vol 13, No 4: December 2022 Vol 13, No 3: September 2022 Vol 13, No 2: June 2022 Vol 13, No 1: March 2022 Vol 12, No 4: December 2021 Vol 12, No 3: September 2021 Vol 12, No 2: June 2021 Vol 12, No 1: March 2021 Vol 11, No 4: December 2020 Vol 11, No 3: September 2020 Vol 11, No 2: June 2020 Vol 11, No 1: March 2020 Vol 10, No 4: December 2019 Vol 10, No 3: September 2019 Vol 10, No 2: June 2019 Vol 10, No 1: March 2019 Vol 9, No 4: December 2018 Vol 9, No 3: September 2018 Vol 9, No 2: June 2018 Vol 9, No 1: March 2018 Vol 8, No 4: December 2017 Vol 8, No 3: September 2017 Vol 8, No 2: June 2017 Vol 8, No 1: March 2017 Vol 7, No 4: December 2016 Vol 7, No 3: September 2016 Vol 7, No 2: June 2016 Vol 7, No 1: March 2016 Vol 6, No 4: December 2015 Vol 6, No 3: September 2015 Vol 6, No 2: June 2015 Vol 6, No 1: March 2015 Vol 5, No 4: 2015 Vol 5, No 3: 2015 Vol 5, No 2: 2014 Vol 5, No 1: 2014 Vol 4, No 4: December 2014 Vol 4, No 3: September 2014 Vol 4, No 2: June 2014 Vol 4, No 1: March 2014 Vol 3, No 4: December 2013 Vol 3, No 3: September 2013 Vol 3, No 2: June 2013 Vol 3, No 1: March 2013 Vol 2, No 4: December 2012 Vol 2, No 3: September 2012 Vol 2, No 2: June 2012 Vol 2, No 1: March 2012 Vol 1, No 2: December 2011 Vol 1, No 1: September 2011 More Issue