cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Power Electronics and Drive Systems (IJPEDS)
ISSN : -     EISSN : 20888694     DOI : -
Core Subject : Engineering,
International Journal of Power Electronics and Drive Systems (IJPEDS, ISSN: 2088-8694, a SCOPUS indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, induction motor drives, synchronous motor drives, permanent magnet motor drives, switched reluctance motor and synchronous reluctance motor drives, ASDs (adjustable speed drives), multi-phase machines and converters, applications in motor drives, electric vehicles, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
Arjuna Subject : -
Articles 45 Documents
Search results for , issue "Vol 8, No 2: June 2017" : 45 Documents clear
Sensor Fault Detection and Isolation Based on Artificial Neural Networks and Fuzzy Logic Applicated on Induction Motor for Electrical Vehicle Souha Boukadida; Soufien Gdaim; Abdellatif Mtiba
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 2: June 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (985.304 KB) | DOI: 10.11591/ijpeds.v8.i2.pp601-611

Abstract

Recently, research has picked up a fervent pace in the area of fault diagnosis of electrical vehicle. Like failures of a position sensor, a voltage sensor, and current sensors. Three-phase induction motors are the “workhorses” of industry and are the most widely used electrical machines. This paper presents a scheme for Fault Detection and Isolation (FDI). The proposed approach is a sensor-based technique using the mains current measurement. Current sensors are widespread in power converters control and in electrical drives. Thus, to ensure continuous operation with reconfiguration control, a fast sensor fault detection and isolation is required. In this paper, a new and fast faulty current sensor detection and isolation is presented. It is derived from intelligent techniques. The main interest of field programmable gate array is the extremely fast computation capabilities. That allows a fast residual generation when a sensor fault occurs. Using of Xilinx System Generator in Matlab / Simulink allows the real-time simulation and implemented on a field programmable gate array chip without any VHSIC Hardware Description Language coding. The sensor fault detection and isolation algorithm was implemented targeting a Virtex5. Simulation results are given to demonstrate the efficiency of this FDI approach.
Comparative Study of Five-Level and Seven-Level Inverter Controlled by Space Vector Pulse Width Modulation Abdelmalik Bendaikha; Salah Saad
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 2: June 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1353.859 KB) | DOI: 10.11591/ijpeds.v8.i2.pp755-766

Abstract

This paper presents a MATLAB/SIMULINK model of two multi-level inverter topologies. Algorithms based on space vector modulation (SVM) technique are developed in order to conduct a comparative study on diode clamped five and seven level inverters. The scheme used to develop these control algorithms are based on symmetrical sequence because of the symmetry of the switching wave. Both topologies are simulated and analyzed using a squirrel cage induction motor. The results have showed that the best motor dynamic response with less harmonic distortion and torque fluctuations is obtained when seven-level inverter is employed.
Performance Analysis of (Bi2Te3-PbTe) Hybrid Thermoelectric Generator Anitha Angeline A; Jayakumar J; Lazarus Godson Asirvatham
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 2: June 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (492.94 KB) | DOI: 10.11591/ijpeds.v8.i2.pp917-925

Abstract

A theoretical analysis on the performance of (Bi2Te3-PbTe) hybrid thermoelectric generator (TEG) is presented in this paper. The effect  of different performance parameters such as output voltage, output current, output power, maximum power output, open circuit voltage, Seebeck  co-efficient, electrical resistance, thermal conductance, figure of merit, efficiency, heat absorbed and heat removed based on maximum conversion and power efficiency have been analyzed by varying the hot side temperature up to 350oC and by varying the cold side temperature from 30oC to 150oC. The results showed that a maximum power output of 21.7 W has been obtained with the use of one hybrid thermoelectric module for a temperature difference of 320oC between the hot and cold side of the thermoelectric generator at matched load resistance. The figure of merit was found to be around 1.28 which makes its usage possible in the intermediate temperature (250oC to 350oC) applications such as heating of Biomass waste, heat from Biomass cook stoves or waste heat recovery etc. It is also observed that the hybrid thermoelectric generator offers superior performance over 250oC  of the hot side temperature, compared to standard Bi2Te3 modules
FOC of SRM using More Efficient DC-DC Converter Topology Emad S. Abdel-Aliem
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 2: June 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (975.134 KB) | DOI: 10.11591/ijpeds.v8.i2.pp534-547

Abstract

Numerous studies had been made to improve the switched reluctance motor operation depend on the modification of the machine design, proposing the converter designs and/or applying a suitable control method. This paper introduces the field orientation control method for that motor using a simple and very efficient DC-DC converter topology. This control method is presented by two techniques; first technique is the advance of the turn-on switching angle and the other technique is the retard/delay of the turn-off switching angle. Instantaneous and average motor characteristics are obtained using Matlab/Simulink software package. Comparison between the simulation results presented using two converter types. A precise speed and torque control are obtained. The average total torque per current is maximized.
Different Control Schemes for Sensor Less Vector Control of Induction Motor Srinivas Gangishetti; Tarakalyani Sandipamu
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 2: June 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (742.003 KB) | DOI: 10.11591/ijpeds.v8.i2.pp712-721

Abstract

This paper deals with the design of different control schemes for sensorless vector control of induction motor.Induction motor is most widely used A.C. Motor but  the major draw back is flux and torque cannot be controlled individually.This can be obtained by implementing  sensorless vector control methods.The control strategy of induction motor  is by different controllers like conventional control methods and artificial intelligence control methods.The conventional control methods are sensitive to parameter changes and will not be accurate. This paper proposes to design a controller to over come the above draw backs by using intelligent control techniques like fuzzy logic, artificial neutral networks (ANN) and genetic algorithm (GA).The above conventional control methods are compared with intelligent control techniques. The simulation studies are carried out using Matlab/Simulink and the wave forms for speed, torque and voltage components for various controlles are plotted. Numerical analysis for speed and torque components considering parameters like peakover shoot and peak time are presented.
Comparison of Multicarrier PWM Techniques for Cascaded H-Bridge Multilevel Inverter Hashim Hasabelrasul; Xiangwu Yan
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 2: June 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1326.949 KB) | DOI: 10.11591/ijpeds.v8.i2.pp861-868

Abstract

One of the preferred choices of electronic power conversion for high power applications are multilevel inverters topologies finding increased attention in industry. Cascaded H-Bridge multilevel inverter is one of these topologies reaching the higher output voltage, power level and higher reliability due to its modular topology. Level Shifted Carrier Pulse Width Modulation (LSCPWM) and Phase Shifted Carrier Pulse Width Modulation are used generally for switching cascaded H-bridge (CHB) multilevel inverters. This paper compares LSCPWM and PSCPWM in terms of total harmonics distortion (THD) and output voltage among inverter cells. Simulation for 21-level CHB inverter is carried out in MATLAB/SIMULINK and simulation results are presented.
Shunt Active Filter Based on Radial Basis Function Neural Network and p-q Power Theory Prakash Ch. Tah; Anup K. Panda; Bibhu P. Panigrahi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 2: June 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1189.505 KB) | DOI: 10.11591/ijpeds.v8.i2.pp667-676

Abstract

In this paper a new combination Radial Basis Function Neural Network and p-q Power Theory (RBFNN-PQ) proposed to control shunt active power filters (SAPF). The recommended system has better specifications in comparison with other control methods. In the proposed combination an RBF neural network is employed to extract compensation reference current when supply voltages are distorted and/or unbalance sinusoidal. In order to make the employed model much simpler and tighter an adaptive algorithm for RBF network is proposed. The proposed RBFNN filtering algorithm is based on efficient  training methods called hybrid learning method.The method  requires a small size network, very robust, and the proposed algorithms are very effective. Extensive simulations are carried out with PI as well as RBFNN controller for p-q control strategies by considering different voltage conditions and adequate results were presented.
ZVS Full Bridge Series Resonant Boost Converter with Series-Connected Transformer Mohamed Salem; Awang Jusoh; N.Rumzi N. Idris; Tole Sutikno; Iftikhar Abid
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 2: June 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1036.651 KB) | DOI: 10.11591/ijpeds.v8.i2.pp812-825

Abstract

This paper presents a study on a new full bridge series resonant converter (SRC) with wide zero voltage switching (ZVS) range, and higher output voltage. The high frequency transformer is connected in series with the LC series resonant tank. The tank inductance is therefore increased; all switches having the ability to turn on at ZVS, with lower switching frequency than the LC tank resonant frequency. Moreover, the step-up high frequency (HF) transformer design steps are introduced in order to increase the output voltage to overcome the gain limitation of the conventional SRC. Compared to the conventional SRC, the proposed converter has higher energy conversion, able to increase the ZVS range by 36%, and provide much higher output power. Finally, the a laboratory prototypes of the both converters with the same resonant tank parameters and input voltage are examined based on 1 and 2.2 kW power respectively, for veryfing  the reliability of the performance and the operation principles of both converters.
Speed and Position Estimator of Dual-PMSM for Independent Control Drives using Five-Leg Inverter Jurifa Mat Lazi; Zulkifilie Ibrahim; MD Hairul Talib; Auzani Jidin; Tole Sutikno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 2: June 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (373.838 KB) | DOI: 10.11591/ijpeds.v8.i2.pp612-622

Abstract

Nowadays, A lot of industry requires Multi Motor System (MMS) applications such as propulsion and traction power, HEV, conveyer and air-conditioner. The Conventional arrangement for MMS usually done by cascading the motors drives which each drives has individual inverter. Part of MMS, Dual-Motor drives fed by a single inverter is being paid attention by the researchers. Dual-motor drives using a single three-leg inverter has its limitation in the case of different operating conditions and independent speed control requirement. Therefore, dual-Motor drives using a single Five-leg Inverter (FLI) was proposed for independent control for both motors. In PMSM drives, the information of the feedback speed and rotor angular position is compulsory for variable speed drives. Conventional solution is by using speed sensor which will increase size, cost, extra hardwire and feedback devices, especially for the case of dual-PMSM drives. The best solution to overcome this problem is by eliminating the usage of speed and position sensors for Dual-motor drives. This paper presents a new sensorless strategy using speed and position estimator for Independent Dual- Permanent Magnet Synchronous Machine (PMSM) drives which utilize Five-Leg Inverter (FLI). The proposed strategy is simulated using MATLAB/Simulink to evaluate the overall motor drive performance. Meanwhile the experimental set-up is connected to dSPACE 1103 Board. The experimental results demonstrate that the proposed estimator is successfully managed to control the Dual-PMSM drives for variation of speed and for different direction applications.
A PWM Strategies for Diode Assisted NPC-MLI to Obtain Maximum Voltage Gain for EV Application C. Bharatiraja; Shri Harish; J L Munda; P. Sanjeevikumar; M. Sriram Kumar; Vivek Bhati
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 2: June 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (664.059 KB) | DOI: 10.11591/ijpeds.v8.i2.pp767-774

Abstract

The projected diode assisted Neutral Point Diode Clamed (NPC-MLI) with the photovoltaic system produces a maximum voltage gain that is comparatively higher than those of other boost conversion techniques. This paper mainly explores vector selection approach pulse-width modulation (PWM) strategies for diode-assisted NPC-MLI to obtain a maximum voltage gain without compromising in waveform quality. To obtain a high voltage gain maximum utilization of dc-link voltage and stress on the power switches must be reduced. From the above issues in the diode assisted NPC-MLI leads to vector selection approach PWM technique to perform capacitive charging in parallel and discharging in series to obtain maximum voltage gain. The operation principle and the relationship of voltage gain versus voltage boost duty ratio and switching device voltage stress versus voltage gain are theoretically investigated in detail. Owing to better performance, diode-assisted NPC-MLI is more promising and competitive topology for wide range dc/ac power conversion in a renewable energy application. Furthermore, theoretically investigated are validated via simulation and experimental results.

Filter by Year

2017 2017


Filter By Issues
All Issue Vol 16, No 4: December 2025 Vol 16, No 3: September 2025 Vol 16, No 2: June 2025 Vol 16, No 1: March 2025 Vol 15, No 4: December 2024 Vol 15, No 3: September 2024 Vol 15, No 2: June 2024 Vol 15, No 1: March 2024 Vol 14, No 4: December 2023 Vol 14, No 3: September 2023 Vol 14, No 2: June 2023 Vol 14, No 1: March 2023 Vol 13, No 4: December 2022 Vol 13, No 3: September 2022 Vol 13, No 2: June 2022 Vol 13, No 1: March 2022 Vol 12, No 4: December 2021 Vol 12, No 3: September 2021 Vol 12, No 2: June 2021 Vol 12, No 1: March 2021 Vol 11, No 4: December 2020 Vol 11, No 3: September 2020 Vol 11, No 2: June 2020 Vol 11, No 1: March 2020 Vol 10, No 4: December 2019 Vol 10, No 3: September 2019 Vol 10, No 2: June 2019 Vol 10, No 1: March 2019 Vol 9, No 4: December 2018 Vol 9, No 3: September 2018 Vol 9, No 2: June 2018 Vol 9, No 1: March 2018 Vol 8, No 4: December 2017 Vol 8, No 3: September 2017 Vol 8, No 2: June 2017 Vol 8, No 1: March 2017 Vol 7, No 4: December 2016 Vol 7, No 3: September 2016 Vol 7, No 2: June 2016 Vol 7, No 1: March 2016 Vol 6, No 4: December 2015 Vol 6, No 3: September 2015 Vol 6, No 2: June 2015 Vol 6, No 1: March 2015 Vol 5, No 4: 2015 Vol 5, No 3: 2015 Vol 5, No 2: 2014 Vol 5, No 1: 2014 Vol 4, No 4: December 2014 Vol 4, No 3: September 2014 Vol 4, No 2: June 2014 Vol 4, No 1: March 2014 Vol 3, No 4: December 2013 Vol 3, No 3: September 2013 Vol 3, No 2: June 2013 Vol 3, No 1: March 2013 Vol 2, No 4: December 2012 Vol 2, No 3: September 2012 Vol 2, No 2: June 2012 Vol 2, No 1: March 2012 Vol 1, No 2: December 2011 Vol 1, No 1: September 2011 More Issue