cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Power Electronics and Drive Systems (IJPEDS)
ISSN : -     EISSN : 20888694     DOI : -
Core Subject : Engineering,
International Journal of Power Electronics and Drive Systems (IJPEDS, ISSN: 2088-8694, a SCOPUS indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, induction motor drives, synchronous motor drives, permanent magnet motor drives, switched reluctance motor and synchronous reluctance motor drives, ASDs (adjustable speed drives), multi-phase machines and converters, applications in motor drives, electric vehicles, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
Arjuna Subject : -
Articles 2,594 Documents
A Modified Bridgeless Converter for SRM Drive with Reduced Ripple Current Maheswari C krishnakumar; Rani Thottungal; Divya A.C
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 6, No 2: June 2015
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (633.012 KB) | DOI: 10.11591/ijpeds.v6.i2.pp362-369

Abstract

Single Phase Switched Reluctance Motor is more popular in many industrial purposes for high speed applications because of its robust and rugged construction. For low cost and variable speed drive applications SRM are widely used.Due to doubly salient structure of motor, the torque pulsations are high when compared to other sinusoidal machines. The major drawback in using SRM drive is torque pulsations and increased number of switching components. In order to overcome these drawbacks, a bridgeless Single Ended Primary Inductor Converter (SEPIC) is proposed. The major advantages of this converter are continuous output current,smaller voltage ripple and reduced semiconductor current stress when compared to the conventional SEPIC converter. The ripple free input current is obtained by using additional winding of input inductor and auxiliary capacitors. To achieve high efficiency, active power factor correction circuits (PFC) are employed to precise the power factor. Further, the unity power factor can be obtained by making the input current during switching period proportional to the input voltage is proposed. The proposed system consists of reduced components and it is also capable of reducing the conduction losses. The working principles and the waveforms of proposed converter are analyzed. To analyze the circuit operation, theoretical analysis and simulation results are provided. Finally, the  comparison between the waveforms of conventional SEPIC and proposed system is presented by using MATLAB/Simulink tools.
Eccentric operation of STATCOM using Predictive Controller K. Varalakshmi; Narasimham R.L.; G. Tulasi Ramdas
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 1: March 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (650.239 KB) | DOI: 10.11591/ijpeds.v9.i1.pp150-156

Abstract

The impact of multilevel converter STATCOM in transmission and distribution system is given high importance. Increment of number of switches in multi-level cascaded H-bridge converter, made it more vulnerable to open circuit and short circuit faults. To reduce the effect of faults on line voltage magnitude, in this paper an advanced improved predictive controller is used to generate PWM pulses for the power electronic devices. A Cascaded H-bridge STATCOM, interconnected to a distribution system with linear and non-linear loads. The feedback control structure of STATCOM has an advantage of reducing THD and controllable reactive power. A switch fault detection and elimination method is proposed with a bypass switch connected to each H-bridge to surpass the faulty  H-bridge. The complete analysis with all control structures is designed in MATLAB/Simulink representing dynamic graphs and feasibility of proposed method is verified.
Multilevel inverter with MPWM-LFT switching strategy for voltage THD minimization M. H. Yatim; A. Ponniran; A. N. Kasiran
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (421.006 KB) | DOI: 10.11591/ijpeds.v10.i3.pp1461-1468

Abstract

This paper presents a proposed modified pulse width modulation – low frequency triangular (MPWM-LFT) switching strategy for minimization of voltage THD with implementation of asymmetric multilevel inverter (AMLI) topology on the reduced number of switching devices (RNSD) circuit structure. Principally, MPWM-LFT able to produce optimum angle of the output voltage level in order to minimize total harmonic distortion (THD). In this study, 5-level reduced number of switching devices circuit structure is selected as a circuit configuration for asymmetric (7-level structure) multilevel inverter. For switching strategy, MPWM used low switching frequency in producing signal and needs higher output voltage levels to achieve low total harmonic distortion. In contrast, sinusoidal pulse width modulation used high switching frequency in order to minimize total harmonic distortion. By optimizing angle at the output voltage using MPWM-LFT switching strategy, the voltage THD is lower as compared to MPWM and SPWM switching strategies. MPWM-LFT switching strategy obtains 11.6% of voltage THD for the 7-level asymmetric topology as compared to MPWM and SPWM switching strategies with the voltage THD are 21.5% and 17.5% respectively from the experimental works.
New Structure for Photovoltaic Systems with Maximum Power Point Tracking Ability Mostafa Barzegar Kalashani; Murtaza Farsadi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 4, No 4: December 2014
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (906.405 KB)

Abstract

This paper proposes a new structure for photovoltaic (PV) arrays with a new inverter topology. A quasi-Z-Source DC-DC Converter (qZSC) with capability of dividing its output voltage to the same voltages and tracking maximum power point is proposed. The Proportional-Integral Incremental Conductance (PI-IncCond) method is used for maximum power point tracking (MPPT). Description of proposed structure along with detailed simulation results that verify its feasibility are given to demonstrate the availability of the proposed system by MATLAB/Simulink software.DOI: http://dx.doi.org/10.11591/ijpeds.v4i4.6365
Performance Comparison of Fuzzy Logic and Proportional-integral for an Electronic Load Controller Muhammad Irfan; Machmud Effendy; Nur Alif; Lailis Syafaah; Ilham Pakaya; Amrul Faruq
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 3: September 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (468.022 KB) | DOI: 10.11591/ijpeds.v8.i3.pp1176-1183

Abstract

Generally, Electronic Load Control (ELC) used in micro hydro power plant (MHPP) to controls the voltage between consumer load and a dummy load, still detects one parameter voltage or frequency generator only. Whereas in reality, any changes in the load on consumers, generator voltage and frequency also changed. When the consumer load down the electric current will be supplied to the dummy load, amounting to decrease in consumer load. When there is a transfer load, there will be distortion voltage and frequency, thus a special methods to reduce distortions by speeding up the process of transferring the electric load is needed. The proposed of this study is using fuzzy logic algorithm.To realize such a system, a comparison tool model of load control digital electronic fuzzy logic controller (FLC) and Proportional Integrator (PI) is required. This modeling using matlab program to simulate, the simulation result shows that the ELC based  on fuzzy logic controller is better than conventional PI control, it seen from fast response to steady state condition.
Performance investigation of multi-level inverter for DFIG during grid autoreclosure operation Mahrous Ahmed; Mohamed K. Metwaly; Nagy Elkalashy
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (27.136 KB) | DOI: 10.11591/ijpeds.v10.i1.pp454-462

Abstract

This paper aims to study the multi-level inverter (MLI) fed the widely used doubly-fed induction generators (DFIG). The new DFIG generator connected to the electrical grid is evaluated during single-pole autoreclosure operation to continue the generator support to the system. The effect of using MLI on the performance of the DFIG system during the dynamic operation of the autoreclosure is studied for the first time and integrating a new MLI during the fault and clearing periods. A dynamic arc model is represented depending on Kizilcay model. Furthermore, the dynamics performance of the DFIG during integration with MLI to improve the performance is studied. The MLI is preferred because of processing high power with high resolution of the voltage waveforms and lower stresses on switches. The MLI enhances the performance of DFIG-based generating system associated with electrical grid system in case of single-pole autoreclosure. The proposed cases of studies are simulated using Matlab/Simulink to evaluate the proposed system performance during the autoreclosure operation for faults in double-circuit transmission systems.
Closed Loop Control of Soft Switched Interleaved Buck Converter R. Shenbagalakshmi; Sree Renga Raja
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 2, No 3: September 2012
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (542.707 KB)

Abstract

Design, Modeling and Simulation of a closed loop control is presented for Interleaved Buck Converter with Soft Switching. The features of the closed loop system are to reduce the switching losses and load current sharing among the parallel connected converters. The control system of the converter is designed using PWM technique. In order to improve the transient response and dynamic stability of the converters, the controller parameters are designed based on current mode control. Resonant components thus designed enable the application of zero current switching for both the converters connected in parallel thereby maintaining greater efficiency and minimizing voltage and current oscillations. The system analysis, design and performance are verified through simulation using MATLAB/Simulink environment. The simulation approach reveals the high speed dynamic performance of the closed loop system designed using robust PID controller. The laboratory prototype of the Buck converter is developed to verify the controller platform using PIC16F877A microcontroller.DOI: http://dx.doi.org/10.11591/ijpeds.v2i3.832
Hardware Implementation of Solar based Boost to SEPIC Converter Fed Nine Level Inverter System D. Jasmine; M. Gopinath
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 7, No 4: December 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (385.307 KB) | DOI: 10.11591/ijpeds.v7.i4.pp1031-1037

Abstract

Multi level inverters are widely used in high power applications because of low harmonic distortion. This paper deals with the simulation and implementation of PV based boost to SEPIC converter with multilevel inverter. The output of PV system is stepped up using boost to sepic converter and it is converted into AC using a multilevel inverter. The simulation and experimental results with the R load is presented in this paper. The FFT analysis is done and the THD values are compared. Boost to SEPIC converter is proposed to step up the voltage to the required value. The experimental results are compared with the simulation results. The results indicate that nine level inverter system has better performance than seven level inverter system.
Review on Optimised Configuration of Hybrid Solar-PV Diesel System for Off-Grid Rural Electrification. Amanda Halim; Ahmad Fudholi; Stephen Phillips; Kamaruzzaman Sopian
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (455.881 KB) | DOI: 10.11591/ijpeds.v9.i3.pp1374-1380

Abstract

At present, solar energy is perceived to be one of the world’s contributive energy sources. Holding characteristics such as inexhaustible and non-polluting, making it as the most prominent among renewable energy (RE) sources. The application of the solar energy has been well-developed and used for electricity generation through Photovoltaic (PV) as the harvesting medium. PV cells convert heat from the sun directly into the electricity to power up the electric loads. Solar PV system is commonly built in a rural area where it cannot be powered up by the utility grid due to location constrains. In order to avoid the electricity fluctuation because of unsteady amount of solar radiation, PV solar hybrid is the efficient solution for rural electrifications. This paper presents a review on optimised Hybrid Solar-PV Diesel system configurations installed and used to power up off grid settlements at various locations worldwide.
Design of fractional order controllers using constrained optimization and reference tracking method Manoj D Patil; K. Vadirajacharya; Swapnil Khubalkar
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 11, No 1: March 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1124.653 KB) | DOI: 10.11591/ijpeds.v11.i1.pp291-301

Abstract

In recent times, fractional order controllers are gaining more interest. There are several fractional order controllers are available in literature. Still, tuning of these controllers is one of the main issues which the control community is facing. In this paper, online tuning of five dierent fractional order controllers is discussed viz. tilted proportional-integral-derivative (T-PID) controller, fractional order proportional-integral (FO-PI) controller, fractional order proportional-derivative (FO-PD) controller, fractional order proportional-integral-derivative (FO-PID) controller. A reference tracking method is proposed for tuning of fractional order controllers. First order with dead time (FOWDT) system is used to check feasibility of the control strategy.

Page 21 of 260 | Total Record : 2594


Filter by Year

2011 2025


Filter By Issues
All Issue Vol 16, No 4: December 2025 Vol 16, No 3: September 2025 Vol 16, No 2: June 2025 Vol 16, No 1: March 2025 Vol 15, No 4: December 2024 Vol 15, No 3: September 2024 Vol 15, No 2: June 2024 Vol 15, No 1: March 2024 Vol 14, No 4: December 2023 Vol 14, No 3: September 2023 Vol 14, No 2: June 2023 Vol 14, No 1: March 2023 Vol 13, No 4: December 2022 Vol 13, No 3: September 2022 Vol 13, No 2: June 2022 Vol 13, No 1: March 2022 Vol 12, No 4: December 2021 Vol 12, No 3: September 2021 Vol 12, No 2: June 2021 Vol 12, No 1: March 2021 Vol 11, No 4: December 2020 Vol 11, No 3: September 2020 Vol 11, No 2: June 2020 Vol 11, No 1: March 2020 Vol 10, No 4: December 2019 Vol 10, No 3: September 2019 Vol 10, No 2: June 2019 Vol 10, No 1: March 2019 Vol 9, No 4: December 2018 Vol 9, No 3: September 2018 Vol 9, No 2: June 2018 Vol 9, No 1: March 2018 Vol 8, No 4: December 2017 Vol 8, No 3: September 2017 Vol 8, No 2: June 2017 Vol 8, No 1: March 2017 Vol 7, No 4: December 2016 Vol 7, No 3: September 2016 Vol 7, No 2: June 2016 Vol 7, No 1: March 2016 Vol 6, No 4: December 2015 Vol 6, No 3: September 2015 Vol 6, No 2: June 2015 Vol 6, No 1: March 2015 Vol 5, No 4: 2015 Vol 5, No 3: 2015 Vol 5, No 2: 2014 Vol 5, No 1: 2014 Vol 4, No 4: December 2014 Vol 4, No 3: September 2014 Vol 4, No 2: June 2014 Vol 4, No 1: March 2014 Vol 3, No 4: December 2013 Vol 3, No 3: September 2013 Vol 3, No 2: June 2013 Vol 3, No 1: March 2013 Vol 2, No 4: December 2012 Vol 2, No 3: September 2012 Vol 2, No 2: June 2012 Vol 2, No 1: March 2012 Vol 1, No 2: December 2011 Vol 1, No 1: September 2011 More Issue