cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Power Electronics and Drive Systems (IJPEDS)
ISSN : -     EISSN : 20888694     DOI : -
Core Subject : Engineering,
International Journal of Power Electronics and Drive Systems (IJPEDS, ISSN: 2088-8694, a SCOPUS indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, induction motor drives, synchronous motor drives, permanent magnet motor drives, switched reluctance motor and synchronous reluctance motor drives, ASDs (adjustable speed drives), multi-phase machines and converters, applications in motor drives, electric vehicles, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
Arjuna Subject : -
Articles 2,594 Documents
A Simplified Space Vector Pulse Width Modulation Method Including Over Modulation Operation for Five Level Cascaded H-bridge Inverter with FPGA Implementation Bogimi Sirisha; P. Satish Kumar
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 3: September 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (756.688 KB) | DOI: 10.11591/ijpeds.v8.i3.pp1203-1211

Abstract

This paper presents simplified control strategy of Space Vector Pulse Width Modulation method  including over modulation region  with linear transfer characteristic for cascaded H-bridge inverters. Because of large number of switching states of the cascaded H- Bridge inverter, the over modulation operation is very complex. And also requires incorporation of  both under modulation and over modulation algorithms. The proposed control method is effective in terms of selecting the optimal switching states with reduced computational complexity using simplified linear calculations which makes it easier for digital implementation. The performance of the proposed method  is simulated and tested experimentally through Spartan 3A FPGA processor for five level Cascaded H-bridge Inverter. The simulation results and harmonic analysis of voltage and current at various modulation indexes as are presented which are in well agreement.
Solution for optimal power flow problem in wind energy system using hybrid multi objective artificial physical optimization algorithm P. Nagalashmi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 1: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2035.725 KB) | DOI: 10.11591/ijpeds.v10.i1.pp486-503

Abstract

Normally, the character of the wind energy as a renewable energy sources has uncertainty in generation. To resolve the Optimal Power Flow (OPF) drawback, this paper proposed a replacement Hybrid Multi Objective Artificial Physical Optimization (HMOAPO) algorithmic rule, which does not require any management parameters compared to different meta-heuristic algorithms within the literature. Artificial Physical Optimization (APO), a moderately new population-based intelligence algorithm, shows fine performance on improvement issues. Moreover, this paper presents hybrid variety of Animal Migration Optimization (AMO) algorithmic rule to express the convergence characteristic of APO. The OPF drawback is taken into account with six totally different check cases, the effectiveness of the proposed HMOAPO technique is tested on IEEE 30-bus, IEEE 118-bus and IEEE 300-bus check system. The obtained results from the HMOAPO algorithm is compared with the other improvement techniques within the literature. The obtained comparison results indicate that proposed technique is effective to succeed in best resolution for the OPF drawback.
Design and Simulation of Phase-Locked Loop Controller Based Unified Power Quality Conditioner Using Nonlinear Loads C. Prakash; N. Suparna
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 2, No 4: December 2012
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (530.355 KB)

Abstract

This project presents a power quality improvement of unified power quality conditioner (UPQC) to compensate current and voltage quality problems of sensitive loads. The UPQC consists of the series and shunt converter having a common dc link. The series converter mitigates voltage sag from the supply side and shunt converter eliminates current harmonics from the nonlimear load side. The developed controllers for series and shunt converters are based on a reference signal generation method (phase-locked loop). The dc link control strategy is based on the fuzzy-logic controllers. The conventional method using dq transformation to show the superiority of the proposed sag detection method. A fast sag detection method is also is presented. The efficiency of the proposed system is tested through simulation studies using the MATLAB/SIMULINK environment.DOI: http://dx.doi.org/10.11591/ijpeds.v2i4.376
Predictive Control for Reduced Structure Multilevel Converters: Experimenting on a Seven Level Packed U-Cell Adel Nazemi; Omid Salari; Mohammad Tavakoli Bina; Masoud Kazemi; Bahman Eskandari
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 7, No 2: June 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1406.993 KB) | DOI: 10.11591/ijpeds.v7.i2.pp568-582

Abstract

Recently, a branch of multilevel converters is emerged, in which their ‘reduced structure’ topologies use lower number of devices compared to the available topologies. To get a cost efficient converter, lower number of components as well as high quality waveforms, multilevel converters with a ‘reduced structure’ (MCRS) are suitable for high/medium power systems. Also, utilizing the fast microprocessors available today, applications of predictive control in power converters are of very powerful and attractive alternatives to classical controllers. This paper proposes a finite control set model-based predictive control (FCS-MPC) for load current regulation and capacitor voltage balancing for a typical MCRS. A case study considered, three-phase seven level packed U-cell (PUC), which is among reduced structure multilevel converters. A discrete model of the system is derived, and a predictive model-based control is developed according to this model in order to predict the future behavior of the system for all possible switching states; then, the switching state that optimized the cost function is selected. The feasibility of the proposed FCS-MPC strategy for a seven level PUC is evaluated based on simulations with MATLAB/ SIMULINK. Moreover, experimental validation of the proposed control system on a 5 kVA PUC is examined through DSP implementation.
Using the Five-Level NPC Inverter to Improve the FOC Control of the Asynchronous Machine Mouna Es-Saadi; Mohamed Khafallah; Hamid Chaikhy
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 4: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1015.443 KB) | DOI: 10.11591/ijpeds.v9.i4.pp1457-1466

Abstract

Many researches have been dedicated to develop the induction motor drive control strategy used on the railway traction applications. In this paper we propose to investigate and to improve the electric locomotives by using a Field Oriented Control (FOC) strategy of induction motor drive. This induction motor can be powered by a five-stage neutral point inverter controlled by sinusoidal pulse width modulation (SPWM) due to good quality for output voltage and The use of fast switches. Both conventional and improved locomotives are simulated in Matlab/Simulink and compared in open loop conditions   and closed loop conditions using IP controller, in term of torque response, current harmonic distortions and rotor speed response.
Intelligent fuzzy sliding mode controller based on FPGA for the speed control of a BLDC motor Arun Prasad K.M.; Usha Nair
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 11, No 1: March 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (445.567 KB) | DOI: 10.11591/ijpeds.v11.i1.pp477-486

Abstract

Brushless DC (BLDC) motors are one of the most widely used motors for various industrial applications due to their high efficiency, high torque to weight ratio and elimination of mechanical commutator. These motors operate in wide range of speeds and necessitate precise speed control techniques, for their nonlinear model, insenseitive to parameter variations and external disturbances, when used in various sensitive applications. Conventional PI and other existing controllers produce high overshoot and increased rise time and settling time. The performance of BLDC motor is enhanced using a Fuzzy Sliding Mode Controller (FSMC) whose gain is intelligently varied with the help of a Fuzzy Inference System (FIS). For this purpose, a suitable FSMC is designed, simulated and implemented using FPGA. The simulation results are validated using Hardware in the loop (HIL) simulation as well as actual hardware implementation. Great improvement in the transient performance is achieved when compared to chatter free SMC, Fuzzy PI and conventional PI controller.
Close Loop V/F Control of Voltage Source Inverter using Sinusoidal PWM, Third Harmonic Injection PWM and Space Vector PWM Method for Induction Motor Sandeep Ojha; Ashok Kumar Pandey
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 7, No 1: March 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (386.849 KB) | DOI: 10.11591/ijpeds.v7.i1.pp217-224

Abstract

The aim of this paper to presents a comparative analysis of Voltage Source Inverter using Sinusoidal Pulse Width Modulation Method, Third Harmonic Injection Pulse Width Modulation Method and Space Vector Pulse Width Modulation Two level inverter for Induction Motor.  In this paper we have designed the Simulink model of Inverter for different technique. An above technique is used to reduce the Total Harmonic Distortion (THD) on the AC side of the Inverter. The Simulink model is close loop. Results are analyzed using Fast Fourier Transformation (FFT) which is for analysis of the Total Harmonic Distortion. All simulation are performed in the MATLAB Simulink / Simulink environment of MATLAB.
Performance Comparison of PID and Fuzzy Controllers in Distributed MPPT Chandani Sharma; Anamika Jain
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 6, No 3: September 2015
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (277.037 KB) | DOI: 10.11591/ijpeds.v6.i3.pp625-635

Abstract

With an increase of Green Technology applications, Photovoltaic have emerged as the most appropriate solution for electricity generation purposes. However, due to variable temperature and irradiance, under the partial or shaded conditions Maximum Power Point Tracking is needed to determine highest efficiency of the system. The paper describes dynamic modeling and control of variable temperature and irradiance on solar panel in SIMULINK-MATLAB environment. The implementation of Buck Converter is used for power switching and impedance matching on connecting the panel to the load. The effectiveness of the model, with enhanced efficiency through voltage stabilization, is performed using Proportional-Integral-Derivative and Fuzzy-Logic-Controllers. A comparative study is made for PID and FLC on the basis of outputs to deal with online set point variations. FLC gives closer results to Standard Test Conditions when compared with PID. The Fuzzy system developed, using tested membership functions serve as a platform for sustainable standalone and grid-based applications using distributed MPPT.   With an increase of Green Technology applications, Photovoltaic have emerged as the most appropriate solution for electricity generation purposes. However, due to variable temperature and irradiance, under the partial or shaded conditions Maximum Power Point Tracking is needed to determine highest efficiency of the system. The paper describes dynamic modeling and control of variable temperature and irradiance on solar panel in SIMULINK-MATLAB environment. The implementation of Buck Converter is used for power switching and impedance matching on connecting the panel to the load. The effectiveness of the model, with enhanced efficiency through voltage stabilization, is performed using Proportional-Integral-Derivative and Fuzzy-Logic-Controllers. A comparative study is made for PID and FLC on the basis of outputs to deal with online set point variations. FLC gives closer results to Standard Test Conditions when compared with PID. The Fuzzy system developed, using tested membership functions serve as a platform for sustainable standalone and grid-based applications using distributed MPPT.      
High Efficiency Harmonic Harvester Rectenna for Energy Storage Application Deepak Kumar; Kalpana Chaudhary
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 1: March 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (751.809 KB) | DOI: 10.11591/ijpeds.v9.i1.pp252-259

Abstract

This work presents harmonic harvester Rectenna integrated power management circuitry for improving RF-DC power conversion efficiency. The circuitry is developed for battery charging or energy storage application; resistance emulation method is used to realize a matching load resistance at output terminals. The proposed technique is useful for harvesting near maximum output power from the dual rectifiers (fundamental and harmonics) independently. Also, it delivers the combined maximal power to the energy storage cell. The power management module based on dual input buck-boost converter with simple open loop control is utilized.
Torque ripple minimization of PMBLDC motor using simple boost inverter Vengadakrishnan, Krishnakumar; Madhanakkumar, N; Pugazhendiran, P; Bharatiraja, C; Sriramkumar, V
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1154.288 KB) | DOI: 10.11591/ijpeds.v10.i4.pp1714-1723

Abstract

This paper proposes the implementation of simple boost circuit incorporated in inverter fed Brushless DC (BLDC) motor drive to boost the performance of torque. BLDC motor becoming subtle because of its performance. But the motor performance is inferior due to the voltage source inverter fed operation of BLDC motor which initiates torque ripple during commutation. Here the usage of Switched Boost Inverter (SBI) which minimizes the storage elements (passive elements), more active element and introduces shoot through mode during commutation as like Z-source inverter.  The analyses of three phase switched boost inverter fed BLDC motor drive have been carried out. The performance of torque almost depends on the stator phase current of the motor. In BLDC motor during commutation interval, one phase loss its exact stator phase current hence it instigate ripple on the torque. The proposed method focuses two intentions to reduce the torque ripple. The first intension is to operate the BLDC motor at 180ᵒ electrical conduction mode, second intension is to introduce the shoot through interval to boost the dc link voltage so as to maintain the stator phase current control which leads to suppress the torque ripple during commutation.  The validation of the proposed SBI based BLDC motor control is demonstrated both by MATLAB/Simulink and Field programmable gate array (FPGA) controller-SPARRTAN III processor. The experimental results of the developed SBI based BLDC motor drive is working over a wide speed range with minimal torque ripple compared to the normal PWM based inverter control.

Page 30 of 260 | Total Record : 2594


Filter by Year

2011 2025


Filter By Issues
All Issue Vol 16, No 4: December 2025 Vol 16, No 3: September 2025 Vol 16, No 2: June 2025 Vol 16, No 1: March 2025 Vol 15, No 4: December 2024 Vol 15, No 3: September 2024 Vol 15, No 2: June 2024 Vol 15, No 1: March 2024 Vol 14, No 4: December 2023 Vol 14, No 3: September 2023 Vol 14, No 2: June 2023 Vol 14, No 1: March 2023 Vol 13, No 4: December 2022 Vol 13, No 3: September 2022 Vol 13, No 2: June 2022 Vol 13, No 1: March 2022 Vol 12, No 4: December 2021 Vol 12, No 3: September 2021 Vol 12, No 2: June 2021 Vol 12, No 1: March 2021 Vol 11, No 4: December 2020 Vol 11, No 3: September 2020 Vol 11, No 2: June 2020 Vol 11, No 1: March 2020 Vol 10, No 4: December 2019 Vol 10, No 3: September 2019 Vol 10, No 2: June 2019 Vol 10, No 1: March 2019 Vol 9, No 4: December 2018 Vol 9, No 3: September 2018 Vol 9, No 2: June 2018 Vol 9, No 1: March 2018 Vol 8, No 4: December 2017 Vol 8, No 3: September 2017 Vol 8, No 2: June 2017 Vol 8, No 1: March 2017 Vol 7, No 4: December 2016 Vol 7, No 3: September 2016 Vol 7, No 2: June 2016 Vol 7, No 1: March 2016 Vol 6, No 4: December 2015 Vol 6, No 3: September 2015 Vol 6, No 2: June 2015 Vol 6, No 1: March 2015 Vol 5, No 4: 2015 Vol 5, No 3: 2015 Vol 5, No 2: 2014 Vol 5, No 1: 2014 Vol 4, No 4: December 2014 Vol 4, No 3: September 2014 Vol 4, No 2: June 2014 Vol 4, No 1: March 2014 Vol 3, No 4: December 2013 Vol 3, No 3: September 2013 Vol 3, No 2: June 2013 Vol 3, No 1: March 2013 Vol 2, No 4: December 2012 Vol 2, No 3: September 2012 Vol 2, No 2: June 2012 Vol 2, No 1: March 2012 Vol 1, No 2: December 2011 Vol 1, No 1: September 2011 More Issue