cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Power Electronics and Drive Systems (IJPEDS)
ISSN : -     EISSN : 20888694     DOI : -
Core Subject : Engineering,
International Journal of Power Electronics and Drive Systems (IJPEDS, ISSN: 2088-8694, a SCOPUS indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, induction motor drives, synchronous motor drives, permanent magnet motor drives, switched reluctance motor and synchronous reluctance motor drives, ASDs (adjustable speed drives), multi-phase machines and converters, applications in motor drives, electric vehicles, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
Arjuna Subject : -
Articles 2,594 Documents
Utlization Cat Swarm Optimization Algorithm for Selected Harmonic Elemination in Current Source Inverter Hamed Hosseinnia; Murteza Farsadi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 6, No 4: December 2015
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (391.281 KB) | DOI: 10.11591/ijpeds.v6.i4.pp888-896

Abstract

The voltage source inverter (VSI) and Current source inverter (CSI) are two types of traditional power inverter topologies.In this paper selective harmonic elimination (SHE) Algorithm was impelemented to CSI and results has been investigated. Cat swarm (CSO) optimization is a new meta-heuristic algorithm which has been used in order to tuning switching parameters in optimized value.Objective fuction is reduction of total harmonic distortion(THD) in inverters output currents.All of simulation has been carried out in Matlab/Software.
Impacts of Photovoltaic Distributed Generation Location and Size on Distribution Power System Network N. Md. Saad; M. Z. Sujod; Lee Hui Ming; M. F. Abas; M. S. Jadin; M. R. Ishak; N. R. H. Abdullah
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 2: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (793.705 KB) | DOI: 10.11591/ijpeds.v9.i2.pp905-913

Abstract

As the rapid development of photovoltaic (PV) technology in recent years with the growth of electricity demand, integration of photovoltaic distributed generation (PVDG) to the distribution system is emerging to fulfil the demand. There are benefits and drawbacks to the distribution system due to the penetration of PVDG. This paper discussed and investigated the impacts of PVDG location and size on distribution power systems. The medium voltage distribution network is connected to the grid with the load being supplied by PVDG. Load flow and short circuit calculation are analyzed by using DigSILENT Power Factory Software. Comparisons have been made between the typical distribution system and the distribution system with the penetration of PVDG. Impacts in which PVDG location and size integrates with distribution system are investigated with the results given from the load flow and short circuit analysis. The results indicate positive impacts on the system interconnected with PVDG such as improving voltage profile, reducing power losses, releasing transmission and distribution grid capacity. It also shows that optimal locations and sizes of DGs are needed to minimize the system’s power losses. On the other hand, it shows that PVDG interconnection to the system can cause reverse power flow at improper DG size and location and increases short circuit level.
Tracking technique for the sudden change of PV inverter load Saeed, Amer Tayes; Taha, Mohammed Qasim; Ahmed, Abdullah Khalid
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (665.842 KB) | DOI: 10.11591/ijpeds.v10.i4.pp2076-2083

Abstract

Many power electronics applications require a power calculation in the control system. To get a suitable output, engineers need to control the process and regulate the power exchange with the grid. Since real and reactive power calculations are so crucial a topic, a novel control strategy for a single-phase photovoltaic (PV) inverter has been developed. Therefore, Direct power control (DPC) and a single-phase three-level space vector pulse width modulation (SVPWM) combine as a control and modulation system. In this paper, predictive real and reactive power control and SVPWM method are conferred in the inner loop. A voltage controller based on a proportionalintegral (PI) scheme is used in the outer loop to acquire constant output voltage and provide power refers to the DPC. The performance of the proposed method is verified by using MATLAB/SIMULINK.
Structure of 15-Level Sub-Module Cascaded H-Bridge Inverter for Speed Control of AC Drive Applications R. Uthirasamy; U. S. Ragupathy; R. Naveen
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 5, No 3: 2015
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (384.284 KB) | DOI: 10.11591/ijpeds.v5.i3.pp404-414

Abstract

This paper deals with the implementation of a single phase 15-level Sub-Multilevel Cascaded H-Bridge Inverter (SMCHBI) for variable speed industrial drive applications. It consists of sub-multilevel modules and H-bridge inverter configuration. Sub-multilevel switches synthesize stepped DC link voltage and current from the DC sources. H-bridge inverter switches renovate stepped DC link voltage and current into sinusoidal waveform. Compared with conventional Cascaded Multilevel Inverter (CMLI), the proposed system employs the reduced number of power switches, DC sources and gate driver requirements. The proposed system not only reduces the overall system cost but also reduces the voltage stress across the inverter switches. The proposed system does not required additional resonant soft switching circuits for Zero Voltage Switching (ZVS) of inverter. In the proposed method, variable frequency method is adopted for the speed control of industrial induction motor drives. A prototype model of 15-level SMCHB is developed and the performance of the systems is validated experimentally.
Indirect Pulse-vector Control of Wound Rotor Induction Motor Drive in ANSYS Electromagnetics Suite Tatiana Andreevna Funk; Yuriy Semenovich Usynin; Evgeniy Viktorovich Belousov
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 3: September 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (912.972 KB) | DOI: 10.11591/ijpeds.v8.i3.pp1147-1159

Abstract

This paper deals with the problem of estimation of rotor angular position for the indirect pulse-vector control of wound rotor induction motor drive. The paper considers issues of thematic justification and expanding of the field of using sensorless motor drives. With a view to improve energy consumption readings during design and modernization of motor drives of massive mechanisms with moderate standards for accuracy of velocity control, requiring long-term velocity decrease during load reduction (according to technological process conditions), using the system of the pulse-vector control of wound rotor induction motor is suggested. The paper provides the solution for the problem of developing math models of this motor drive system both for the motor-mounted sensor, and for indirect angular position sensing. The models were developed in ANSYS Electromagnetics Suite using the finite element method for studying electromagnetic processes. Based on the models, the investigation of transition and steady states of a motor drive was carried out, process quality parameters were obtained, namely: max and root-mean-square currents, torques; velocity control errors caused by pulse operation mode. From that simulation, the result illustrates the effectiveness of the proposed approach.
Efficiency enhancement of solar PV powered micro-integrated high frequency isolated vehicle battery charging converter Jawahar Marimuthu; Jayasankar V; Karthik Kumar K; Edward Rajan S
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (488.803 KB) | DOI: 10.11591/ijpeds.v10.i2.pp953-960

Abstract

This Paper proposes a method to improve the efficiency of charging the battery used in autonomous electric vehicle powered by foldable roof-mounted solar photovoltaic (PV) generation system. The conventional vehicle battery charging application from solar PV consists of a boost converter in the frontend followed by a full bridge converter with discrete switches. Here an attempt is made on the total scheme with a micro integrated package to have better conversion efficiency with high power density. The total system is controlled digitally incorporating zero voltage transition (ZVT) in the full bridge conversion. A typical specification with a power level of 300-400 W was targeted and achieved.
Multi-Level DC-DC Converter for High Gain Applications Girish Ganesan R; M. Prabhakar
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 3, No 4: December 2013
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1357.567 KB)

Abstract

The output voltage from most renewable energy sources like photovoltaic arrays and fuel cells will be at low level. This must be stepped up considerably for practical utilization or grid connection. The presented multilevel boost converter DC-DC converter topology consists of the conventional boost converter and voltage doubler stages to provide high voltage gain. The proposed topology uses only one switch along with one inductor, (2N-1) diodes and (2N-1) capacitors for obtaining an output which is N times the conventional boost converter. In this topology, each device blocks only one voltage level. The main advantages of this topology are continuous input current, large gain without high duty cycle or transformer, modularity and use of devices with low voltage ratings. Experimental results obtained from the 100W prototype demonstrate the voltage gain capability of the converter and validates the converter design.DOI: http://dx.doi.org/10.11591/ijpeds.v4I1.4870
Savonius Wind Turbine Performances on Wind Concentrator Dygku. Asmanissa Awg. Osman; Norzanah Rosmin; Nor Shahida Hasan; Baharruddin Ishak; Aede Hatib Mustaamal@Jamal; Mariyati Marzuki
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 1: March 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (607.033 KB) | DOI: 10.11591/ijpeds.v8.i1.pp376-383

Abstract

The air streams from the outlet of an air compressor can be used to generate electricity. For instance, if a micro-sized Vertical-Axis Wind-Turbine (VAWT) is installed towards the airflow, some amount of electricity can be generated before being stored in a battery bank. The research’s objectives are to design, fabricate and analyze the performance of Helical Savonius VAWT blade rotors, which is tested with and without using a wind concentrator. The Helical Savonius VAWT is tested at 0 cm without the concentrator, whereas the blade rotor is tested at concave-blade position when using the concentrator. The blade and the wind concentrator designs were based on the dimensions and the constant airflow of the air compressor. The findings suggested that the blade produced its best performance when tested using wind concentrator at concave-blade position in terms of angular speed (ω), tip speed ratio (TSR) and the generated electrical power (PE). The findings concluded that the addition of wind concentrator increases the airflow which then provided better performances on the blades.
Losses Computation in Reciprocating Tubular Permanent Magnet Generator with SMC Core Behrooz Rezaeealam
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 4: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (515.071 KB) | DOI: 10.11591/ijpeds.v9.i4.pp1545-1551

Abstract

Generally, the Permanent Magnet Tubular Generators (PMTG) are employed in the free-piston generator systems. In this paper, the PMTG with the core made of Soft Magnetic Composite (SMC) is employed, and then, the PMTG with the solid SMC core has cylindrical symmetry and also the outer diameter of the machine reduces in comparison to the ones with multipart laminated steel cores in which each part is radially placed along the air-gap and there is unexploited space between them. Here, a Finite Element Method (FEM) is developed in which the reciprocating motion of the translator is considered by moving mesh techniques and moreover, the Jiles-Atherton (JA) scalar hysteresis model is incorporated in the FE model to take into account the hysteresis losses. Then, the copper and core losses are computed and the equivalent circuit of the generator is derived. The calculated losses are compared with the ones obtained from the analytical methods.
Design and implementation of an efficient WPT system Abdulkareem Mokif Obais; Ali Faeq Ruzij
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 11, No 2: June 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1001.963 KB) | DOI: 10.11591/ijpeds.v11.i2.pp711-725

Abstract

Wireless power transfer (WPT) is a technique introduced to transfer power wirelessly. Generally, WPT systems are characterized by low efficiency and low output power. Since WPT process depends mainly on mutual coupling between transmitting and receiving coils in addition to load requirements, it is focused in this work toward enhancing the mutual coupling and conditioning the receiving circuit so as to optimally satisfy the load demand. The mutual coupling between transmitting and receiving nodes is enhanced via inserting three resonating circuits along with energy transmission path and conditioning the receiving circuit such that it accomplishes delivering maximum power to the load node. In this work, an adaptive efficient WPT system is introduced. This system is carried out on PSpice and validated experimentally. Both simulative and experimental WPT systems have accomplished significant enhancement in efficiency. The proposed WPT system has three resonators and three parallel connected identical receiving coils located at 6.61m from the power transmitter. The efficiency enhancement approaches thousands of times the efficiency of a conventional WPT system having similar power transmitter located at the same distance from the receiving circuit, which has a single coil identical to those in the proposed efficient WPT system.

Page 9 of 260 | Total Record : 2594


Filter by Year

2011 2025


Filter By Issues
All Issue Vol 16, No 4: December 2025 Vol 16, No 3: September 2025 Vol 16, No 2: June 2025 Vol 16, No 1: March 2025 Vol 15, No 4: December 2024 Vol 15, No 3: September 2024 Vol 15, No 2: June 2024 Vol 15, No 1: March 2024 Vol 14, No 4: December 2023 Vol 14, No 3: September 2023 Vol 14, No 2: June 2023 Vol 14, No 1: March 2023 Vol 13, No 4: December 2022 Vol 13, No 3: September 2022 Vol 13, No 2: June 2022 Vol 13, No 1: March 2022 Vol 12, No 4: December 2021 Vol 12, No 3: September 2021 Vol 12, No 2: June 2021 Vol 12, No 1: March 2021 Vol 11, No 4: December 2020 Vol 11, No 3: September 2020 Vol 11, No 2: June 2020 Vol 11, No 1: March 2020 Vol 10, No 4: December 2019 Vol 10, No 3: September 2019 Vol 10, No 2: June 2019 Vol 10, No 1: March 2019 Vol 9, No 4: December 2018 Vol 9, No 3: September 2018 Vol 9, No 2: June 2018 Vol 9, No 1: March 2018 Vol 8, No 4: December 2017 Vol 8, No 3: September 2017 Vol 8, No 2: June 2017 Vol 8, No 1: March 2017 Vol 7, No 4: December 2016 Vol 7, No 3: September 2016 Vol 7, No 2: June 2016 Vol 7, No 1: March 2016 Vol 6, No 4: December 2015 Vol 6, No 3: September 2015 Vol 6, No 2: June 2015 Vol 6, No 1: March 2015 Vol 5, No 4: 2015 Vol 5, No 3: 2015 Vol 5, No 2: 2014 Vol 5, No 1: 2014 Vol 4, No 4: December 2014 Vol 4, No 3: September 2014 Vol 4, No 2: June 2014 Vol 4, No 1: March 2014 Vol 3, No 4: December 2013 Vol 3, No 3: September 2013 Vol 3, No 2: June 2013 Vol 3, No 1: March 2013 Vol 2, No 4: December 2012 Vol 2, No 3: September 2012 Vol 2, No 2: June 2012 Vol 2, No 1: March 2012 Vol 1, No 2: December 2011 Vol 1, No 1: September 2011 More Issue