International Journal of Power Electronics and Drive Systems (IJPEDS)
International Journal of Power Electronics and Drive Systems (IJPEDS, ISSN: 2088-8694, a SCOPUS indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, induction motor drives, synchronous motor drives, permanent magnet motor drives, switched reluctance motor and synchronous reluctance motor drives, ASDs (adjustable speed drives), multi-phase machines and converters, applications in motor drives, electric vehicles, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
Articles
2,594 Documents
Comparative Study of Controllers for an Isolated Full Bridge Boost Converter Topology in Fuel Cell Applications
S. Vijaya Madhavi;
G. Tulasi Ram Das
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 4: December 2018
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1370.073 KB)
|
DOI: 10.11591/ijpeds.v9.i4.pp1644-1656
Now a day’s renewable energy sources became an interesting area of research of which fuel cells are emerged as an alternative source for producing electricity to meet the energy crisis. This led to a research on power conditioning systems through which fuel cell is interfaced to the utility. Of the different converter topologies Isolated full bridge boost converter (IFBC) topology is most suitable for fuel cell applications. In this paper a Predictive Switching Modulator (PSM) Control is proposed for the converter topology and its performance is compared with Linear Peak Current Mode control (LPCM), Non-Linear Carrier Control (NLC).
Electricity market strategies applied to microgrid development
Carlos Ulises Cassiani;
John Edwin Candelo Becerra;
Fredy Edimer Hoyos
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 11, No 1: March 2020
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (395.173 KB)
|
DOI: 10.11591/ijpeds.v11.i1.pp530-546
Over the last decade, the liberalization of the electricity market has been sought. In order to fight the environmental impact caused by the use of fossil fuels, it is aimed to change the current system of centralized generation and achieve a more distributed one; distributed resources can use renewable or non-renewable resources as main source of energy, one way to implement these distributed systems is through micro electrical grids, since these allow improving energy efficiency. The way to efficiently implement this type of network is an important point to be solved in future research and even more if the way of conducting an electricity market for different communities is unknown. That is why this text presents the characteristics of microgrids, the management of microgrids, and the wide and promising panorama of future opportunities for a great development of this type of grid.
Comparison of PI and PID Controlled Bidirectional DC-DC Converter Systems
K.C. Ramya;
V. Jegathesan
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 7, No 1: March 2016
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (232.788 KB)
|
DOI: 10.11591/ijpeds.v7.i1.pp56-65
This paper deals with comparison of responses of the PI and the PID controlled bidirectional DC-DC converter systems. A coupled inductor is used in the present work to produce high gain. Open loop and closed loop controlled systems with PI and PID controllers are designed and simulated using Matlab tool. The principles of operation and simulation case studies are discussed in detail. The comparison is made in terms of rise time, fall time, peak overshoot and steady state error.
Unknown Input Observer for a Doubly Fed Induction Generator Subject to Disturbances
Samir Abdelmalek;
Linda Barazane;
Abdelkader Larabi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 6, No 4: December 2015
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (288.632 KB)
|
DOI: 10.11591/ijpeds.v6.i4.pp781-787
This paper deals with the problem design of an unknown input observer (UIO) for a Doubly Fed Induction Generator (DFIG) subject to disturbances. These disturbances can be considered as unknown inputs (UI). The state space model of the DFIG is obtained from the voltage equations of the stator and rotor. Then, this latter is used for the design of an unknown input observer (UIO) in order to estimate both the state and the unknown inputs of the DFIG. Furthermore, the UIO gains are computed by solving a set of linear matrix inequalities (LMIs). Simulations results are given to show the performance and the effectiveness of the proposed method.
Design and Analysis of In-Wheel Double Stator Slotted Rotor BLDC Motor for Electric Bicycle Application
S. Farina;
R.N. Firdaus;
F. Azhar;
M. Azri;
M. S. Ahmad;
R. Suhairi;
A. Jidin;
Tole Sutikno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 1: March 2018
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (867.75 KB)
|
DOI: 10.11591/ijpeds.v9.i1.pp457-464
This paper discusses about design and analysis of double stator slotted rotor (DSSR) BLDC motor for electric bicycle application. Usually single stator (SS) BLDC motor is used in an electric bicycle. This type of motor has low performance and need to be charged regularly. The objective of this research is to design and analysis DSSR motor that have high torque. At starts, design specification for the electric bicycle is calculated. Next, design process for DSSR is carried out by using the desired parameter. Lastly, analysis for double stator slotted rotor is simulated using FEM. Result for average back emf, average inductance, inner stator flux density, outer stator flux density, average torque and estimate torque constant is obtained. Result for average torque from FEM archieve the requirement of motor torque for DSSR design where the maximum average torque is 16.2 Nm. This research will give benefit to mankind and society in term of environment protection and energy consumption.
DC-DC converter based power management for go green applications
W, Abitha Memala;
Bhuvaneswari, C.;
Shyni, S.M.;
Sheeba, G. Merlin;
Mahendra, Modi Surya;
Jaishree, V
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (530.516 KB)
|
DOI: 10.11591/ijpeds.v10.i4.pp2046-2054
A non-isolated tri-port converter is a fully compact and functional system by the integration of basic converters. This can be used for renewable energy applications. This converter is capable of achieving different switching patterns of power flow between the source and load, interfaced sources of various voltage and current levels with the dc grid. This tri-port converter has to be used for continuous power distribution of rechargeable battery, photovoltaic panels and load. Due to the implementation of this dc-dc converter some operations like buck, boost and buck-boost operations became easy. Use of this converter helps in easy implementation of the system. The solar PV panel implementation boosts the system to a high level and bidirectional flow became easy from source to load and vice versa
FPGA-Based Implementation Direct Torque Control of Induction Motor
Saber Krim;
Soufien Gdaim;
Abdellatif Mtibaa;
Mohamed Faouzi Mimouni
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 5, No 3: 2015
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (492.5 KB)
|
DOI: 10.11591/ijpeds.v5.i3.pp293-304
This paper proposes a digital implementation of the direct torque control (DTC) of an Induction Motor (IM) with an observation strategy on the Field Programmable Gate Array (FPGA). The hardware solution based on the FPGA is caracterised by fast processing speed due to the parallel processing. In this study the FPGA is used to overcome the limitation of the software solutions (Digital Signal Processor (DSP) and Microcontroller). Also, the DTC of IM has many drawbacks such as for example; The open loop pure integration has from the problems of integration especially at the low speed and the variation of the stator resistance due to the temperature. To tackle these problems we use the Sliding Mode Observer (SMO). This observer is used estimate the stator flux, the stator current and the stator resistance. The hardware implementation method is based on Xilinx System Generator (XSG) which a modeling tool developed by Xilinx for the design of implemented systems on FPGA; from the design of the DTC with SMO from XSG we can automatically generate the VHDL code. The model of the DTC with SMO has been designed and simulated using XSG blocks, synthesized with Xilinx ISE 12.4 tool and implemented on Xilinx Virtex-V FPGA.
Predictive Direct Power Control (PDPC) of Grid-connected Dual-active Bridge Multilevel Inverter (DABMI)
H.H. Goh;
Azuwien Aida;
S.S. Lee;
S.Y. Sim;
K.C. Goh
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 4: December 2017
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1243.441 KB)
|
DOI: 10.11591/ijpeds.v8.i4.pp1524-1533
This paper deals with controlling a grid-connected dual-active bridge multilevel inverter for renewable energy integration. The concept of direct power control is integrated with model predictive control algorithm, which is termed as predictive direct power control, to control the real and reactive power injected into the power grid. The proposed multilevel inverter allows more options of feasible voltage vectors for switching vector selections in order to generate multilevel outputs, and thereby obtaining high power quality in the power grid. By using the predictive direct power control, simulation results show that the proposed multilevel inverter produces lower power ripple and manage to achieve currents with low total harmonic distortion which are well within the IEEE standard. The modeling and simulation of the system are implemented and validated by MATLAB Simulink software.
The linear quadratic regular algorithm-based control system of the direct current motor
Trong-Thang Nguyen
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (493.168 KB)
|
DOI: 10.11591/ijpeds.v10.i2.pp768-776
This research aims to propose an optimal controller for controlling the speed of the Direct Current (DC) motor. Based on the mathematical equations of DC Motor, the author builds the equations of the state space model and builds the linear quadratic regulator (LQR) controller to minimize the error between the set speed and the response speed of DC motor. The results of the proposed controller are compared with the traditional controllers as the PID, the feed-forward controller. The simulation results show that the quality of the control system in the case of LQR controller is much higher than the traditional controllers. The response speed always follows the set speed with the short conversion time, there isn't overshoot. The response speed is almost unaffected when the torque impact on the shaft is changed.
Enhanced Torque Control and Reduced Switching Frequency in Direct Torque Control Utilizing Optimal Switching Strategy for Dual-Inverter Supplied Drive
M. Khairi Rahim;
Auzani Jidin;
Tole Sutikno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 7, No 2: June 2016
Publisher : Institute of Advanced Engineering and Science
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (851.177 KB)
|
DOI: 10.11591/ijpeds.v7.i2.pp328-339
Direct Torque Control (DTC) of induction machine has received wide acceptance in many adjustable speed drive applications due to its simplicity and high performance torque control. However, the DTC using a common two-level inverter poses two major problems such as higher switching frequency (or power loss) and larger torque ripple. These problems are due to inappropriate voltage vectors which are selected among a limited number of voltage vectors available in two-level inverter. The proposed research aims to formulate an optimal switching strategy using Dual-Inverter Supplied Drive for high performances of DTC. By using dual-inverter supplied, it provides greater number of voltage vectors which can offer more options to select the most appropriate voltage vectors. The most appropriate voltage vectors should able to produce minimum torque slope but sufficient to satisfy torque demands. The identification is accomplished by using an equation of rate of change of torque which is derived from the induction machine equations. The proposed strategy also introduces a block of modification of torque error status which is responsible to modify the status such that it can determine the most optimal voltage vectors from a look-up table, according to motor operating conditions. The improvements obtained are as follows; 1) minimization of switching frequency (reduce power loss), and 2) reduction of torque ripple. Some improvements obtained in the proposed strategy were verified via experimentations.