cover
Contact Name
Imam Much Ibnu Subroto
Contact Email
imam@unissula.ac.id
Phone
-
Journal Mail Official
ijai@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN : 20894872     EISSN : 22528938     DOI : -
IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like genetic algorithm, ant colony optimization, etc); reasoning and evolution; intelligence applications; computer vision and speech understanding; multimedia and cognitive informatics, data mining and machine learning tools, heuristic and AI planning strategies and tools, computational theories of learning; technology and computing (like particle swarm optimization); intelligent system architectures; knowledge representation; bioinformatics; natural language processing; multiagent systems; etc.
Arjuna Subject : -
Articles 30 Documents
Search results for , issue "Vol 10, No 3: September 2021" : 30 Documents clear
Implementation of fuzzy logic method for automation of decision making of Boeing aircraft landing Winda Pratiwi; Aghus Sofwan; Iwan Setiawan
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i3.pp545-552

Abstract

In the landing process, airplanes have many safety factors that must be protected. Weather advice and information is very important as a consideration in determining the feasibility of landing an aircraft. The main objective of this research is the implementation of Mamdani fuzzy simulation in determining the feasibility of landing aircraft at Ahmad Yani Airport in Semarang using ATC police and pilot coordination on runway number 31. Wind direction, wind velocity, visibility, and pilot experience are used to determine eligibility aircraft landing. An intelligent system based on fuzzy logic produces three decisions that are feasible, careful, and not feasible in landing an aircraft on a runway. The results of the study concluded from an intelligent system based on fuzzy logic can be used to determine aircraft landing decisions on the runway of Ahmad Yani Airport Semarang on runway number 31.
Spatial decision tree model for garlic land suitability evaluation Andi Nurkholis; Imas Sukaesih Sitanggang; Annisa Annisa; Sobir Sobir
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i3.pp666-675

Abstract

Predicting land and weather characteristics as indicators of land suitability is very important in increasing effectiveness in food production. This study aims to evaluate the suitability of garlic land using spatial decision tree algorithm. The algorithm is the improvement of the conventional decision tree algorithm in which spatial join relation is included to grow up spatial decision tree. The spatial dataset consists of a target layer that represents garlic land suitability and ten explanatory layers that represent land and weather characteristics in the study areas of Magetan and Solok district, Indonesia. This study generated the best spatial decision trees for each study area. On Magetan dataset, the best model has 33 rules with 94.34% accuracy and relief variable as the root node, whereas on Solok dataset, the best model has 66 rules with 60.29% accuracy and soil texture variable as the root node.
Inflection rules for Marathi to English in rule based machine translation Namrata G Kharate; Varsha H Patil
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i3.pp780-788

Abstract

Machine translation is important application in natural language processing. Machine translation means translation from source language to target language to save the meaning of the sentence. A large amount of research is going on in the area of machine translation. However, research with machine translation remains highly localized to the particular source and target languages as they differ syntactically and morphologically. Appropriate inflections result correct translation. This paper elaborates the rules for inflecting the parts-of-speech and implements the inflection for Marathi to English translation. The inflection of nouns, pronouns, verbs, adjectives are carried out on the basis of semantics of the sentence. The results are discussed with examples.
Accelerating the training of deep reinforcement learning in autonomous driving Emmanuel Ifeanyi Iroegbu; Madhavi Devaraj
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i3.pp649-656

Abstract

Deep reinforcement learning has been successful in solving common autonomous driving tasks such as lane-keeping by simply using pixel data from the front view camera as input. However, raw pixel data contains a very high-dimensional observation that affects the learning quality of the agent due to the complexity imposed by a 'realistic' urban environment. Ergo, we investigate how compressing the raw pixel data from high-dimensional state to low-dimensional latent space offline using a variational autoencoder can significantly improve the training of a deep reinforcement learning agent. We evaluated our method on a simulated autonomous vehicle in car learning to act and compared our results with many baselines including deep deterministic policy gradient, proximal policy optimization, and soft actorcritic. The result shows that the method greatly accelerates the training time and there was a remarkable improvement in the quality of the deep reinforcement learning agent.
Hybrid of convolutional neural network algorithm and autoregressive integrated moving average model for skin cancer classification among Malaysian Chee Ka Chin; Dayang Azra binti Awang Mat; Abdulrazak Yahya Saleh
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i3.pp707-716

Abstract

Skin cancer is a widely spreading cause of mortality among the people specifically living on or near the equatorial belt. Early detection of skin cancer significantly improves the recovery prevalence and the chance of surviving. Without the assist of computer-aided decision (CAD) system, skin cancer classification is the challenging task for the dermatologist to differentiate the type of skin cancer and provide the suitable treatment. Recently, the development of machine learning and pretrained deep neural network (DNN) shows the tremendous performance in image classification task which also provide the promising performance in medical field. However, these machine learning methods cannot get the deep features from network flow which resulting in low accuracy and the pretrained DNN has the complex network with a huge number of parameters causes the limited classification accuracy. This paper focuses on the classification of skin cancer to identify whether it is basal cell carcinoma, melanoma or squamous cell carcinoma by using the development of hybrid convolutional neural network algorithm and autoregressive integrated moving average model (CNN-ARIMA). The CNNARIMA model was trained and found to produce the best accuracy of 92.25%.
Deep ensemble learning for skin lesions classification with convolutional neural network Renny Amalia Pratiwi; Siti Nurmaini; Dian Palupi Rini; Muhammad Naufal Rachmatullah; Annisa Darmawahyuni
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i3.pp563-570

Abstract

One type of skin cancer that is considered a malignant tumor is melanoma. Such a dangerous disease can cause a lot of death in the world. The early detection of skin lesions becomes an important task in the diagnosis of skin cancer. Recently, a machine learning paradigm emerged known as deep learning (DL) utilized for skin lesions classification. However, in some previous studies by using seven class images diagnostic of skin lesions classification based on a single DL approach with CNNs architecture does not produce a satisfying performance. The DL approach allows the development of a medical image analysis system for improving performance, such as the deep convolutional neural networks (DCNNs) method. In this study, we propose an ensemble learning approach that combines three DCNNs architectures such as Inception V3, Inception ResNet V2 and DenseNet 201 for improving the performance in terms of accuracy, sensitivity, specificity, precision, and F1-score. Seven classes of dermoscopy image categories of skin lesions are utilized with 10015 dermoscopy images from well-known the HAM10000 dataset. The proposed model produces good classification performance with 97.23% accuracy, 90.12% sensitivity, 97.73% specificity, 82.01% precision, and 85.01% F1-Score. This method gives promising results in classifying skin lesions for cancer diagnosis.
A compact deep learning model for Khmer handwritten text recognition Bayram Annanurov; Norliza Mohd Noor
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i3.pp584-591

Abstract

The motivation of this study is to develop a compact offline recognition model for Khmer handwritten text that would be successfully applied under limited access to high-performance computational hardware. Such a task aims to ease the ad-hoc digitization of vast handwritten archives in many spheres. Data collected for previous experiments were used in this work. The oneagainst-all classification was completed with state-of-the-art techniques. A compact deep learning model (2+1CNN), with two convolutional layers and one fully connected layer, was proposed. The recognition rate came out to be within 93-98%. The compact model is performed on par with the state-of-theart models. It was discovered that computational capacity requirements usually associated with deep learning can be alleviated, therefore allowing applications under limited computational power.
A framework to shape the recommender system features based on participatory design and artificial intelligence approaches Tajul Rosli Razak; Mohammad Hafiz Ismail; Shukor Sanim Mohd Fauzi; Ray Adderley JM Gining; Ruhaila Maskat
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i3.pp727-734

Abstract

A recommender system is an algorithm aiming at giving suggestions to users on relevant elements or items such as products to purchase, books to read, jobs to apply or anything else depending on industries or situations. Recently, there has been a surge in interest in developing a recommender system in a variety of areas. One of the most widely used approaches in recommender systems is collaborative filtering (CF). The CF is a strategy for automatically creating a filter based on a user's needs by extracting desires or recommendation information from a large number of users. The CF approach uses multiple correlation steps to do this. However, the occurrence of uncertainty in finding the best similarity measure is unavoidable. This paper outlines a method for improving the configuration of a recommender system that is tasked with recommending an appropriate study field and supervisor to a group of final-year project students. The framework we suggest is built on a participatory design methodology that allows students' individual opinions to be factored into the recommender system's design. The architecture of the recommender scheme was also illustrated using a real-world scenario, namely mapping the students' field of interest to a possible supervisor for the final year project.
Internet of things and fuzzy logic for smart street lighting prototypes Mindit Eriyadi; Ade Gafar Abdullah; Hasbullah Hasbullah; Sandy Bhawana Mulia
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i3.pp528-535

Abstract

Internet of things (IoT) and fuzzy logic are very useful in increasing the efficiency and effectiveness of a system; this study applies both to the street lighting systems. The prototype of a street lighting control and monitoring system has been completed. The status of lights that are on or off and the value of the light intensity can be monitored by using IoT. The intensity of the light is fuzzy controlled by utilizing the presence of vehicles and pedestrians around the lights. The prototype is made with a scale against real conditions. Data is processed and transmitted using a microcontroller and Wi-Fi on the IoT module. Mobile applications have been used on smartphone interfaces to monitor and control lamps wherever they are connected to the Internet. Changes in the status of lights to turn on or off are done by the relay module. The fuzzy light intensity control system uses sensors and microcontrollers by utilizing the presence of vehicles and pedestrians around the lights. Performance evaluation has been carried out on a miniature street lighting with the results of monitoring and control following its function. An analysis of the resulting energy savings has been demonstrated.
Proposing WPOD-NET combining SVM system for detecting car number plate Phat Nguyen Huu; Cuong Vu Quoc
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i3.pp657-665

Abstract

Nowadays, there are many smart parking lots using plate detection system to control in/out vehicles. However, the disadvantages of systems are a fixed environment and necessity of manual labor and requirement of checkpoints in entrances. To solve the problems, a novel algorithm for wide-angle detecting car number plate using warped planar object detection (WPOD-NET) and a modified support vector machine (SVM) system is proposed. Comparing to other models, the proposal improves not only the range of detection angle but also the accuracy of detecting in shady conditions. The results show that the accuracy of proposal model is up to 95.1% with 1000 testing images in various scenarios.

Page 1 of 3 | Total Record : 30


Filter by Year

2021 2021


Filter By Issues
All Issue Vol 14, No 5: October 2025 Vol 14, No 4: August 2025 Vol 14, No 3: June 2025 Vol 14, No 2: April 2025 Vol 14, No 1: February 2025 Vol 13, No 4: December 2024 Vol 13, No 3: September 2024 Vol 13, No 2: June 2024 Vol 13, No 1: March 2024 Vol 12, No 4: December 2023 Vol 12, No 3: September 2023 Vol 12, No 2: June 2023 Vol 12, No 1: March 2023 Vol 11, No 4: December 2022 Vol 11, No 3: September 2022 Vol 11, No 2: June 2022 Vol 11, No 1: March 2022 Vol 10, No 4: December 2021 Vol 10, No 3: September 2021 Vol 10, No 2: June 2021 Vol 10, No 1: March 2021 Vol 9, No 4: December 2020 Vol 9, No 3: September 2020 Vol 9, No 2: June 2020 Vol 9, No 1: March 2020 Vol 8, No 4: December 2019 Vol 8, No 3: September 2019 Vol 8, No 2: June 2019 Vol 8, No 1: March 2019 Vol 7, No 4: December 2018 Vol 7, No 3: September 2018 Vol 7, No 2: June 2018 Vol 7, No 1: March 2018 Vol 6, No 4: December 2017 Vol 6, No 3: September 2017 Vol 6, No 2: June 2017 Vol 6, No 1: March 2017 Vol 5, No 4: December 2016 Vol 5, No 3: September 2016 Vol 5, No 2: June 2016 Vol 5, No 1: March 2016 Vol 4, No 4: December 2015 Vol 4, No 3: September 2015 Vol 4, No 2: June 2015 Vol 4, No 1: March 2015 Vol 3, No 4: December 2014 Vol 3, No 3: September 2014 Vol 3, No 2: June 2014 Vol 3, No 1: March 2014 Vol 2, No 4: December 2013 Vol 2, No 3: September 2013 Vol 2, No 2: June 2013 Vol 2, No 1: March 2013 Vol 1, No 4: December 2012 Vol 1, No 3: September 2012 Vol 1, No 2: June 2012 Vol 1, No 1: March 2012 More Issue