cover
Contact Name
Imam Much Ibnu Subroto
Contact Email
imam@unissula.ac.id
Phone
-
Journal Mail Official
ijai@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN : 20894872     EISSN : 22528938     DOI : -
IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like genetic algorithm, ant colony optimization, etc); reasoning and evolution; intelligence applications; computer vision and speech understanding; multimedia and cognitive informatics, data mining and machine learning tools, heuristic and AI planning strategies and tools, computational theories of learning; technology and computing (like particle swarm optimization); intelligent system architectures; knowledge representation; bioinformatics; natural language processing; multiagent systems; etc.
Arjuna Subject : -
Articles 1,722 Documents
Revolutionizing recommendations a survey: a comprehensive exploration of modern recommender systems Ram Vinayababu, Prithvi; Krishna Raju, Pushpa Sothenahalli
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i4.pp2579-2589

Abstract

The rapid proliferation of digital information and online services has fundamentally reshaped user interactions with websites, necessitating the evolution of recommender systems. These systems, crucial in domains such as e-commerce, education, and scientific research, serve to enhance user engagement and satisfaction through personalized recommendations. However, it comes up with new challenges, including information overload, prompting the development of recommender systems that can efficiently navigate this vast group to offer more personalized and relevant suggestions. This survey paper explores the dynamic opinion of recommendation systems, addressing the limitations of traditional approaches, the emergence of deep learning models, and the extended potential for additional data. By investigating various recommendation systems and the evolving role of deep learning, this paper illuminates the path toward more accurate, personalized, and effective recommender systems, considering challenges like sparse data and improved context-based recommendations. The study encompasses three primary recommendation approaches: collaborative filtering, content-based filtering, and hybrid systems. It further investigates into the transformation brought about by deep learning models, showcasing how these models intricate user-item interactions. This survey offers a comprehensive exploration of recommendation systems and their advancements in the digital era, providing insights into the future of personalized content delivery.
Prediction of side effects of drug resistant tuberculosis drugs using multi-label random forest Helma, Siti Syahidatul; Kusuma, Wisnu Ananta; Mushthofa, Mushthofa; Handayani, Diah
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i4.pp2899-2908

Abstract

Drug-resistant tuberculosis (DR-TB) has become a concern because anti-tuberculosis drugs (ATD) used to treat it can cause side effects in patients. This study aimed to predict the potential side effects of ATD using a multi-label classification approach with a random forest (RF) algorithm. This study used 660 medical record data, including the 14 ATD treatments prescribed to the patients and the six side effects experienced by patients. The model was trained using the best parameters based on the hyperparameter tuning process. The results show that the RF multi-label algorithm can be an alternative for building ATD side effect prediction models because it produces the most optimal performance value compared to the decision tree (DT) and extreme gradient boosting (XGBoost). The area under the curve (AUC) score of all RF multi-label models is above 0.8, which means that all RF multi-label models are considered acceptable and applicable for ATD side effect prediction. In addition, eight features influenced the models based on the average feature importance score of the RF models. This study is expected to help predict the side effects of ATD used to treat DR-TB based on ATD treatment and determine the most promising tree-based machine learning algorithm for predicting ATD side effects.
Impact of batch size on stability in novel re-identification model Idrissi Alami, Mossaab; Ez-zahout, Abderrahmane; Omary, Fouzia
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i4.pp2724-2733

Abstract

This research introduces ConvReID-Net, a custom convolutional neural network (CNN) developed for person re-identification (Re-ID) focusing on the batch size dynamics and their effect on training stability. The model architecture consists of three convolutional layers, each followed by batch normalization, dropout, and max-pooling layers for regularization and feature extraction. The final layers include flattened and dense layers, optimizing the extracted features for classification. Evaluated over 50 epochs using early stopping, the network was trained on augmented image data to enhance robustness. The study specifically examines the influence of batch size on model performance, with batch size 64 yielding the best balance between validation accuracy (96.68%) and loss (0.1962). Smaller (batch size 32)and larger (batch size 128) configurations resulted in less stable performance, underscoring the importance of selecting an optimal batch size. These findings demonstrate ConvReID-Net’s potential for real-world Re-ID applications, especially in video surveillance systems. Future work will focus on further hyperparameter tuning and model improvements to enhance training efficiency and stability.
Driving agricultural evolution: implementing agriculture 4.0 with Raspberry Pi and internet of things in Morocco Mouachi, Raja; Youssef, Elbelghiti; El mrini, Sanaa; Ezzini, Mustapha; Raoufi, Mustapha
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i4.pp3462-3473

Abstract

The purpose of this project was to investigate the use of embedded system and smartphone technologies in conjunction with Raspberry Pi and NodeMCU to create an intelligent system for smart farming (SF). By means of experiments and comparative analysis carried out in several agricultural contexts, the research evaluated the efficacy of the intelligent system. Results showed that the system was able to handle pertinent agricultural activities and effectively monitor important environmental factors including temperature, humidity, soil moisture, and climatic quality. The system's remote accessibility helped farmers by allowing them to effectively oversee agricultural operations at any time and from any location. As a consequence, SF techniques produced more production, lower costs, and maintained assets.
Solving k-city multiple travelling salesman using genetic algorithm Prakash, Alikapati; Balakrishna, Uruturu; Manogaran, Thangaraj; Kumar, Thenepalle Jayanth
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i4.pp2741-2752

Abstract

This paper addresses a novel variant of the classical multiple traveling salesman problem (MTSP) i.e. k-city multiple traveling salesman problem (k-MTSP). The problem can describe as follows. Let there are n cities, m salesman positioned at depot city and a predefined positive value k. The distance between each pair of cities is known. The objective of the k-MTSP is to determine a collection of m closed tours for salesman, which covers exactly k (including depot city) of n cities such that the total distance covered is minimum. The k-MTSP can be seen as a combination of both subset selection and permutation characteristics. From the through literature review, it is found that this study on k-MTSP is first of its kind to the best of author’s knowledge. The paper introduces a zero-one integer linear programming (0-1 ILP) formulation alongside an efficient genetic algorithm (GA), designed to address k-MTSP. No comparative studies carried out due to the absence of existing studies on k-MTSP. However, the developed GA is tested over various benchmark test cases from TSPLIB and results are reported, which may potentially serve as basis for further comparative studies. Overall findings demonstrate that the GA consistently produces best solutions within reasonable computational times for relatively smaller and medium test cases, suggesting its robustness and effectiveness in tackling the k-MTSP. However, to enhance consistency and efficiency, particularly for larger datasets, further algorithm improvements are necessary.
Investigation on low-performance tuned-regressor of inhibitory concentration targeting the SARS-CoV-2 polyprotein 1ab Sengkey, Daniel Febrian; Regina Masengi, Angelina Stevany; Sambul, Alwin Melkie; Tallei, Trina Ekawati; Unsratdianto Sompie, Sherwin Reinaldo
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i4.pp3003-3013

Abstract

Hyperparameter tuning is a key optimization strategy in machine learning (ML), often used with GridSearchCV to find optimal hyperparameter combinations. This study aimed to predict the half-maximal inhibitory concentration (IC50) of small molecules targeting the SARS-CoV-2 replicase polyprotein 1ab (pp1ab) by optimizing three ML algorithms: histogram gradient boosting regressor (HGBR), light gradient boosting regressor (LGBR), and random forest regressor (RFR). Bioactivity data, including duplicates, were processed using three approaches: untreated, aggregation of quantitative bioactivity, and duplicate removal. Molecular features were encoded using twelve types of molecular fingerprints. To optimize the models, hyperparameter tuning with GridSearchCV was applied across a broad parameter space. The results showed that the performance of the models was inconsistent, despite comprehensive hyperparameter tuning. Further analysis showed that the distribution of Murcko fragments was uneven between the training and testing datasets. Key fragments were underrepresented in the testing phase, leading to a mismatch in model predictions. The study demonstrates that hyperparameter tuning alone may not be sufficient to achieve high predictive performance when the distribution of molecular fragments is unbalanced between training and testing datasets. Ensuring fragment diversity across datasets is crucial for improving model reliability in drug discovery applications.
Optimization control design and simulation of furnace-fired boiler exit pressure: leveraging disruptive technology Salawu, Ganiyat Abiodun; Bright, Glen
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i4.pp2979-2990

Abstract

The efficient operation of furnace-fired drum boilers is critically dependent on the precise control of downstream exit pressure, especially in the presence of stochastic heat fluctuations. This paper presents a stochastic control approach for regulating the downstream exit pressure in a furnace-fired boiler subject to random heat fluctuations. A stochastic model of the boiler dynamics is developed, incorporating heat transfer and combustion uncertainties. By leveraging disruptive technology, such as the model predictive control (MPC), strategies were designed to optimize the downstream exit pressure in real-time, and minimizing deviations from the set point. Simulation studies demonstrated the effectiveness of the proposed approach in maintaining a stable exit pressure despite random heat fluctuations. Results show significant improvements in boiler performance and efficiency compared to traditional proportional integral derivative (PID) control. The proposed stochastic control strategy offers a promising solution for reliable and efficient operation of furnace-fired boilers under uncertain conditions.
Domain-specific knowledge and context in large language models: challenges, concerns, and solutions Adavala, Kiran Mayee; Adavala, Om
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i4.pp2568-2578

Abstract

Large language models (LLMs) are ubiquitous today with major usage in the fields of industry, research, and academia. LLMs involve unsupervised learning with large natural language data, obtained mostly from the internet. There are several challenges that arise because of these data sources. One such challenge is with respect to domain-specific knowledge and context. This paper deals with the major challenges faced by LLMs due to data sources, such as, lack of domain expertise, understanding specialized terminology, contextual understanding, data bias, and the limitations of transfer learning. This paper also discusses some solutions for the mitigation of these challenges such as pre-training LLMs on domain-specific corpora, expert annotations, improving transformer models with enhanced attention mechanisms, memory-augmented models, context-aware loss functions, balanced datasets, and the use of knowledge distillation techniques.
Challenges of recommender systems in finance and banking: a systematic review Bonde, Lossan; Bichanga, Abdoul Karim
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i4.pp2559-2567

Abstract

Recommender systems are widely applied in various domains, including e-commerce, marketing, and education. Despite their popularity, recommender systems are not widely used in finance and banking. This paper aims to identify the challenges associated with using recommender systems in finance and banking and recommend directions for future research. Using a systematic literature review (SLR) method, 52 papers were selected and analyzed. A three-step process was used to make the selection. First, a keyword search was made to identify a seed list of sources. A snowball technique with specific inclusion and exclusion criteria was applied to expand the list. Finally, a quick study was made to produce the final list of sources to consider. Through the study of the 52 relevant papers, three main challenges: i) transparency, ethics, and data privacy; ii) handling complex content information and accounting for multiple user behaviors; and iii) explainability of AI models were identified. This study has established the barriers to adopting recommender systems in the finance and banking industry. Specific subjects of concern identified include cold-start problems, personalization, fraud detection, transparency, and data privacy. The study recommends further research leveraging advanced machine learning models and emerging technologies to fill the gap.
Modified zero-reference deep curve estimation for contrast quality enhancement in face recognition Kahfi Aulia, Muhammad; Aruming Tyas, Dyah
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i4.pp3274-3286

Abstract

Face recognition systems remain challenged by variable lighting conditions. While zero-reference deep curve estimation (Zero-DCE) effectively enhances low-light images, it frequently induces overexposure in normal- and high-brightness scenarios. This study introduces modified Zero-DCE combined with three established enhancement techniques: contrast stretching (CS), contrast limited adaptive histogram equalization (CLAHE), and brightness preserving dynamic histogram equalization (BPDHE). Evaluations employed the extended Yale face database B and face recognition technology (FERET) datasets, with 10 representative samples assessed using the blind/referenceless image spatial quality evaluator (BRISQUE) metric. Modified Zero-DCE with BPDHE produced optimal enhancement quality, achieving a mean BRISQUE score of 16.018. On the extended Yale face database B, visual geometry group 16 (VGG16) integrated with modified Zero-DCE and CLAHE attained 83.65% recognition accuracy, representing a 6.08-percentage-point improvement over conventional Zero-DCE. For the 200-subject FERET subset, residual network 50 (ResNet50) with modified Zero-DCE and CLAHE achieved 67.41% accuracy. Notably, standard Zero-DCE with CLAHE demonstrated superior robustness in extremely low-light conditions, highlighting the illumination-dependent performance characteristics of these enhancement approaches.

Filter by Year

2012 2025


Filter By Issues
All Issue Vol 14, No 6: December 2025 Vol 14, No 5: October 2025 Vol 14, No 4: August 2025 Vol 14, No 3: June 2025 Vol 14, No 2: April 2025 Vol 14, No 1: February 2025 Vol 13, No 4: December 2024 Vol 13, No 3: September 2024 Vol 13, No 2: June 2024 Vol 13, No 1: March 2024 Vol 12, No 4: December 2023 Vol 12, No 3: September 2023 Vol 12, No 2: June 2023 Vol 12, No 1: March 2023 Vol 11, No 4: December 2022 Vol 11, No 3: September 2022 Vol 11, No 2: June 2022 Vol 11, No 1: March 2022 Vol 10, No 4: December 2021 Vol 10, No 3: September 2021 Vol 10, No 2: June 2021 Vol 10, No 1: March 2021 Vol 9, No 4: December 2020 Vol 9, No 3: September 2020 Vol 9, No 2: June 2020 Vol 9, No 1: March 2020 Vol 8, No 4: December 2019 Vol 8, No 3: September 2019 Vol 8, No 2: June 2019 Vol 8, No 1: March 2019 Vol 7, No 4: December 2018 Vol 7, No 3: September 2018 Vol 7, No 2: June 2018 Vol 7, No 1: March 2018 Vol 6, No 4: December 2017 Vol 6, No 3: September 2017 Vol 6, No 2: June 2017 Vol 6, No 1: March 2017 Vol 5, No 4: December 2016 Vol 5, No 3: September 2016 Vol 5, No 2: June 2016 Vol 5, No 1: March 2016 Vol 4, No 4: December 2015 Vol 4, No 3: September 2015 Vol 4, No 2: June 2015 Vol 4, No 1: March 2015 Vol 3, No 4: December 2014 Vol 3, No 3: September 2014 Vol 3, No 2: June 2014 Vol 3, No 1: March 2014 Vol 2, No 4: December 2013 Vol 2, No 3: September 2013 Vol 2, No 2: June 2013 Vol 2, No 1: March 2013 Vol 1, No 4: December 2012 Vol 1, No 3: September 2012 Vol 1, No 2: June 2012 Vol 1, No 1: March 2012 More Issue