cover
Contact Name
Imam Much Ibnu Subroto
Contact Email
imam@unissula.ac.id
Phone
-
Journal Mail Official
ijai@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN : 20894872     EISSN : 22528938     DOI : -
IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like genetic algorithm, ant colony optimization, etc); reasoning and evolution; intelligence applications; computer vision and speech understanding; multimedia and cognitive informatics, data mining and machine learning tools, heuristic and AI planning strategies and tools, computational theories of learning; technology and computing (like particle swarm optimization); intelligent system architectures; knowledge representation; bioinformatics; natural language processing; multiagent systems; etc.
Arjuna Subject : -
Articles 1,722 Documents
Generative Indonesian chatbot for university major selection using transformers embedding Khadija, Mutiara Auliya; Harjito, Bambang; Saberi, Morteza; Paradhita, Astrid Noviana; Nurharjadmo, Wahyu
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i4.pp3474-3482

Abstract

Selecting a university major is a crucial decision that impacts students' future career paths and personal fulfillment. Traditional guidance methods often lack the personalization and timeliness needed to support students effectively. This study explores the use of Indonesian generative artificial intelligence (AI) chatbots and transformer embeddings to enhance decision-making for university major selection. By leveraging advanced AI techniques, such as bidirectional encoder representations from transformers (BERT) and Gemini embeddings, the research aims to provide personalized, interactive, and contextually relevant guidance. Experiments showed that BERT embeddings achieved the highest accuracy, with recurrent neural network (RNN) and long short-term memory (LSTM) models also performing well but facing issues with overfitting. Gemini embeddings provided strong performance but slightly less effective than BERT. The findings suggest that BERT-based models with RNN are superior for developing decision-support systems in 92% accuracy. Future work should focus on further optimization and integration of user feedback to ensure the relevance and effectiveness of these AI tools in educational settings.
Synthesizing strategies and innovations in combating land degradation: a global perspective on sustainability and resilience Hediyalad, Gangamma; Kukkuvada, Ashoka; Hegde Kota, Govardhan
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i4.pp3133-3142

Abstract

This paper presents a comprehensive examination of land degradation, a critical environmental challenge with far-reaching implications for agricultural productivity, ecosystem sustainability, and socio-economic stability worldwide. With the backdrop of escalating human population pressures and the exacerbating impact of climate change. It delves into the causes and consequences of soil erosion, desertification, salinization, and biodiversity loss, highlighting the interplay between natural processes and anthropogenic activities. Through a detailed review of literature spanning various remediation technologies, conservation practices, and policy frameworks, the paper critically assesses the effectiveness of current land management approaches, including the utilization of biosurfactants, remote sensing technologies, and agroforestry systems. Furthermore, it identifies significant research gaps and future directions, emphasizing the need for quantitative assessments, exploration of socio-economic impacts, and evaluation of restoration techniques. By offering evidence-based recommendations for policymakers and practitioners, this paper contributes to the global dialogue on sustainable land management and aims to catalyze action towards halting the advance of land degradation, ensuring food security, and preserving biodiversity for future generations. This work not only advances our understanding of land degradation challenges but also outlines a path forward for research, policy, and practice in the pursuit of environmental sustainability and resilience.
Comparative evaluation of left ventricle segmentation using improved pyramid scene parsing network in echocardiography Wang, Jin; Aliman, Sharifah; Ibrahim, Shafaf
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i4.pp3214-3227

Abstract

Automatic segmentation of the left ventricle is a challenging task due to the presence of artifacts and speckle noise in echocardiography. This paper studies the ability of a fully supervised network based on pyramid scene parsing network (PSPNet) to implement echocardiographic left ventricular segmentation. First, the lightweight MobileNetv2 was selected to replace ResNet to adjust the coding structure of the neural network, reduce the computational complexity, and integrate the pyramid scene analysis module to construct the PSPNet; secondly, introduce dilated convolution and feature fusion to propose an improved PSPNet model, and study the impact of pre-training and transfer learning on model segmentation performance; finally, the public data set challenge on endocardial three-dimensional ultrasound segmentation (CETUS) was used to train and test different backbone and initialized PSPNet models. The results demonstrate that the improved PSPNet model has strong segmentation advantages in terms of accuracy and running speed. Compared with the two classic algorithms VGG and Unet, the dice similarity coefficient (DSC) index is increased by an average of 7.6%, Hausdorff distance (HD) is reduced by 2.9%, and the mean intersection over union (mIoU) is improved by 8.8%. Additionally, the running time is greatly shortened, indicating good clinical application potential.
Machine learning for global trade analysis: a hybrid clustering approach using DBSCAN, elbow, and SOM Thamrin, Musdalifa; Mulyadi, Ida; Made Widia, I Dewa; Faisal, Muhammad; Hi Baharuddin, Suardi; Prihatmono, Medy Wismu; Nurdiansyah, Nurdiansyah; Usman, Nasir
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i4.pp3033-3046

Abstract

Global trade constitutes a highly complex and interdependent system influenced by diverse economic, geographic, and political factors. This study proposes a hybrid clustering framework that integrates density-based spatial clustering of applications with noise (DBSCAN), elbow, and self-organizing maps (SOM) methods to uncover latent structures in international trade patterns. Utilizing averaged trade data from 25 countries spanning the period from 2013 to 2023, the framework identifies distinct clusters based on export-import characteristics. The DBSCAN is employed to detect dense trade hubs and outlier behaviors, the elbow method determines the optimal number of clusters, and SOM facilitates the visualization of non-linear, high-dimensional trade relationships. The analysis reveals three prominent trade clusters: Global Trade Leaders, Emerging Trade Powers, and Niche Exporters, each reflecting varying degrees of trade diversification and dependency. These empirical findings align with established economic theories, including the Heckscher Ohlin model and dependency theory, and provide actionable insights for policymakers seeking to enhance trade competitiveness and regional integration strategies.
An automatic social engagement measurement during human-robot interaction Almohammed, Wael Hasan Ali; Muhisn, Sinan Adnan; Muhisn, Zahraa AbedAljasim
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i4.pp2805-2814

Abstract

Social engagement refers the expressions of existing interpersonal relationships during the interaction which represents the actual interesting of human in the interaction. However, social engagement measurement is a significant concern in social human-robot interaction (HRI) because of its role in understanding the interaction’s trend and adapt robot’s behavior accordingly. Hence, we achieved the two main objectives of this study. Firstly, enrichment the theoretical literature and related concepts. Secondly, proposed a robust neural network model which is multilayer perceptron (MLP) classifier to measure social engagement state during interaction. PInSoRo dataset was used for training and testing purpose. In particular, the parameters of MLP model were meticulously crafted to recognize the social engagement accurately. We evaluated the model’s performance by several metrics and the result showed an interesting accuracy reached 94.85%. Given that, it supports the robot to has adaptive and responsive behavior in real time applications which is improving HRI eventually.
Enhancing touchless smart locker systems through advanced facial recognition technology: a convolutional neural network model approach Rangkuti, Abdul Haris; Tanuar, Evawaty; Yapson, Febriant; Sijoatmodjo, Felix Octavio; Athala, Varyl Hasbi
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i4.pp3262-3273

Abstract

As the world recovers from COVID-19, demand for contactless systems is increasing, promising safety and convenience. Touchless technology, particularly public locker security systems that use facial recognition and hand detection, is advancing rapidly. The system minimizes physical contact, increasing user safety. It uses advanced models such as multi-task cascaded convolutional networks (MTCNN) and RetinaFace, FaceNet512, ArcFace, and visual geometry group (VGG)-Face for face detection and recognition, with a combination of RetinaFace, ArcFace, and L2 norm Euclidean or cosine as the most effective distance metric method, where the accuracy reaches 96 and 90%. 'Yourvault', an application demonstrating this efficient security feature, provides notifications for mask detection, facial authenticity and locker status, offering a solution to the problem of convenience and security of public spaces. Future research could investigate the impact of photo age on facial recognition accuracy, potentially making touchless systems more efficient. In general, the application of this technology is an important step towards a safer and more comfortable world after the pandemic. This model approach can be followed up with more optimal facial recognition.
Interpretable machine learning for academic risk analysis in university students Dewi, Mukti Ratna; Habibi, Mochammad Reza; Babgei, Bassam; Ananda, Lovinki Fitra; Ulama, Brodjol Sutijo Suprih
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i4.pp3089-3098

Abstract

Higher education institutions often grapple with issues related to academic risk among their students. These academic risks encompass low academic performance, study delays, and dropouts. One approach to address these challenges is to predict students’ academic performance as accurately as possible by leveraging advanced computational techniques and utilizing academic and non-academic student data. This research aims to develop a model that accurately identifies students with high potential for academic risk while explaining the contributing factors to this phenomenon in the Faculty of Vocational Studies, Institut Teknologi Sepuluh Nopember (ITS). The prediction model is constructed using the light gradient boosting machine (LightGBM) method and is subsequently interpreted using the Shapley additive explanations (SHAP) value. Additionally, an oversampling method, based on synthetic minority oversampling technique (SMOTE), is implemented to address imbalances in the dataset. The proposed approach achieves 96% and 97% accuracy and specificity rates, respectively. Analysis based on SHAP values reveals that extracurricular activities, choice of major, smoking habit, gender, and friendship circle are among the top five factors impacting students’ academic risk.
Improving firewall performance using hybrid of optimization algorithms and decision trees classifier Abualhaj, Mosleh M.; Abu-Shareha, Ahmad Adel; Al-Khatib, Sumaya Nabil; Alsaaidah, Adeeb M.; Anbar, Mohammed
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i4.pp2839-2848

Abstract

One of the primary concerns of governments, corporations, and even individual users is their level of online protection. This is because a large number of attacks target their primary assets. A firewall is a critical tool that almost every organization uses to protect its assets. However, firewalls become less reliable when they deal with large amounts of data. One method for reducing the amount of data and enhancing firewall performance is feature selection. The main aim of this study is to enhance the firewall's performance by proposing a new feature selection method. The proposed feature selection method combines the strengths of Harris Hawks optimization (HHO) and whale optimization algorithm (WOA). Experiments were performed utilizing the NSL-KDD dataset to measure the effectiveness of the proposed method. The experiments employed the decision trees (DTs) as a machine classifier. The experimental results show that the achieved accuracy is 98.46% when using HHO/WOA for feature selection and DT for classification, outperforming the HHO and WOA when used separately for feature selection. The study's findings offer insightful information for researchers and practitioners looking to improve firewall effectiveness and efficiency in defending internet connections against changing threats.
Applications of artificial intelligence in indoor fire prevention and fighting Huu Ai, Duong; Nguyen, Van Loi; Luong, Khanh Ty; Le, Viet Truong
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i4.pp2646-2654

Abstract

In this study, we design and analysis of artificial intelligence (AI) in indoor fire prevention and fighting. The application of image recognition processing technology has progressed from the early stages using color recognition and feature extraction methods, a newer approach is optical flow using image sequence data to identify motion regions. Image recognition processing technology, a subset of computer vision and AI, has numerous applications across different industries. It allows machines to interpret and make decisions based on visual data, such as photos, videos, or live camera feeds. Recently, AI has many applications in the field of indoor fire prevention and firefighting, leveraging real-time data analysis, predictive modeling, and automation to enhance safety and efficiency. With the application of a neural network, the simulated flame features in the laboratory are used as the input; The image containing the flame from the animation and the features of the image are fed into the artificial neural network obtained from the image from the charge-coupled device camera.
Estimating broiler heat stress using computer vision and machine learning Anggoro Agung, Muhammad Iqbal; Mursito Budi, Eko; Indar Mandasari, Miranti
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i4.pp2922-2934

Abstract

To optimize and enhance the efficiency of broiler chicken farming, it is essential to maintain the chicken’s welfare, as heat stress can decrease growth efficiency. The temperature-humidity index (THI) is a key indicator used to determine if chickens are experiencing heat stress. Precision livestock farming (PLF) based on computer vision is one method that can assist farmers in continuously and automatically monitoring the condition of their chickens. This research developed a computer vision-based PLF system to observe chickens with CP 707 strain in a commercial farm using the Mask region-based convolutional neural network (Mask R-CNN) method and object tracking algorithms to analyze features such as the cluster index, unrest index, and the distance traveled by broilers. The results indicated that all features tend to inversely correlate with the THI value, with the cluster index showing the most noticeable tendency. Additionally, it was found that external factors, such as the presence of farmers around the observation area, can affect the chickens' behavior, although the cluster index feature is relatively resilient to disturbances if the operator is not captured by the camera. It was concluded that there is a relationship between the features and the THI value; however, these features are not yet sufficient to distinguish the condition of chickens under high and low THI conditions in real-time.

Filter by Year

2012 2025


Filter By Issues
All Issue Vol 14, No 6: December 2025 Vol 14, No 5: October 2025 Vol 14, No 4: August 2025 Vol 14, No 3: June 2025 Vol 14, No 2: April 2025 Vol 14, No 1: February 2025 Vol 13, No 4: December 2024 Vol 13, No 3: September 2024 Vol 13, No 2: June 2024 Vol 13, No 1: March 2024 Vol 12, No 4: December 2023 Vol 12, No 3: September 2023 Vol 12, No 2: June 2023 Vol 12, No 1: March 2023 Vol 11, No 4: December 2022 Vol 11, No 3: September 2022 Vol 11, No 2: June 2022 Vol 11, No 1: March 2022 Vol 10, No 4: December 2021 Vol 10, No 3: September 2021 Vol 10, No 2: June 2021 Vol 10, No 1: March 2021 Vol 9, No 4: December 2020 Vol 9, No 3: September 2020 Vol 9, No 2: June 2020 Vol 9, No 1: March 2020 Vol 8, No 4: December 2019 Vol 8, No 3: September 2019 Vol 8, No 2: June 2019 Vol 8, No 1: March 2019 Vol 7, No 4: December 2018 Vol 7, No 3: September 2018 Vol 7, No 2: June 2018 Vol 7, No 1: March 2018 Vol 6, No 4: December 2017 Vol 6, No 3: September 2017 Vol 6, No 2: June 2017 Vol 6, No 1: March 2017 Vol 5, No 4: December 2016 Vol 5, No 3: September 2016 Vol 5, No 2: June 2016 Vol 5, No 1: March 2016 Vol 4, No 4: December 2015 Vol 4, No 3: September 2015 Vol 4, No 2: June 2015 Vol 4, No 1: March 2015 Vol 3, No 4: December 2014 Vol 3, No 3: September 2014 Vol 3, No 2: June 2014 Vol 3, No 1: March 2014 Vol 2, No 4: December 2013 Vol 2, No 3: September 2013 Vol 2, No 2: June 2013 Vol 2, No 1: March 2013 Vol 1, No 4: December 2012 Vol 1, No 3: September 2012 Vol 1, No 2: June 2012 Vol 1, No 1: March 2012 More Issue