cover
Contact Name
Imam Much Ibnu Subroto
Contact Email
imam@unissula.ac.id
Phone
-
Journal Mail Official
ijai@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN : 20894872     EISSN : 22528938     DOI : -
IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like genetic algorithm, ant colony optimization, etc); reasoning and evolution; intelligence applications; computer vision and speech understanding; multimedia and cognitive informatics, data mining and machine learning tools, heuristic and AI planning strategies and tools, computational theories of learning; technology and computing (like particle swarm optimization); intelligent system architectures; knowledge representation; bioinformatics; natural language processing; multiagent systems; etc.
Arjuna Subject : -
Articles 1,722 Documents
Evaluation of scratch and pre-trained convolutional neural networks for the classification of Tomato plant diseases Mohammad Amimul Ihsan Aquil; Wan Hussain Wan Ishak
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i2.pp467-475

Abstract

Plant diseases are a major cause of destruction and death of most plants and especially trees. However, with the help of early detection, this issue can be solved and treated appropriately. A timely and accurate diagnosis is critical in maintaining the quality of crops. Recent innovations in the field of deep learning (DL), especially in convolutional neural networks (CNNs) have achieved great breakthroughs across different applications such as the classification of plant diseases. This study aims to evaluate scratch and pre-trained CNNs in the classification of tomato plant diseases by comparing some of the state-of-the-art architectures including densely connected convolutional network (Densenet) 120, residual network (ResNet) 101, ResNet 50, ReseNet 30, ResNet 18, squeezenet and Vgg.net. The comparison was then evaluated using a multiclass statistical analysis based on the F-Score, specificity, sensitivity, precision, and accuracy. The dataset used for the experiments was drawn from 9 classes of tomato diseases and a healthy class from PlantVillage. The findings show that the pretrained Densenet-120 performed excellently with 99.68% precision, 99.84% F-1 score, and 99.81% accuracy, which is higher compared to its non-trained based model showing the effectiveness of using a combination of a CNN model with fine-tuning adjustment in classifying crop diseases.
Novel approach of association rule mining for tree canopy assessment Nilkamal More; V. B. Nikam; Biplab Banerjee
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i3.pp771-779

Abstract

The evolution of technology and availability of voluminous satellite images are bringing a new scenario in satellite image classification where a performance efficient method for predictive analysis of satellite images for land cover classification needs to be devised. As urban areas are growing at faster rate, special attention needs to be given to solve tree canopy assessment problem. Vegetation indices are calculated from spectral information of satellite images. Hundreds of such vegetation indices are available to detect vegetation from a satellite image. The contribution of this paper is designing an improved Apriori algorithm to select optimal number of vegetation indices for tree canopy assessment. In this research, we propose a novel computational approach that allows the improvement of results. It selects optimal combination of vegetation indices and applies principal component analysis on it. It uses a greedy approach based on Apriori algorithm. This study emphasizes on assessment of tree canopy using GPU-enabled environment for performance-efficient assessment. The results achieved, are comparable to state-of-the-art techniques, with an accuracy of 96%. The research has considered 4 years data for Mumbai city of India. This research is useful for Green India Mission of India to assess tree canopy of urban region.
The LSTM technique for demand forecasting of e-procurement in the hospitality industry in the UAE Elezabeth Mathew; Sherief Abdulla
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 9, No 4: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v9.i4.pp757-765

Abstract

The hospitality industry is growing at a faster pace across the world which has resulted in the accumulation of a huge amount of data in terms of employee details, property details, purchase details, vendor details, and so on. The industry is yet to fully benefit from these big data by applying ML and AI. The data has not been fully investigated for decision-making or revenue/budget forecasting. In this research data is collected from a chain hotel for advanced predictive analytics. Descriptive and diagnostic analytics is done to an extent across the hotel industry, whereas predictive and prescriptive analysis is done rarely. Demand forecasting for spend and quantity is done using the LSTM technique in e-procurement within the hospitality industry in the UAE. Five years of historical data from a chain hotel in the UAE is used for deep learning in this study. The results confirm the ability of LSTM model to predict e-procurement spend and order forecast for six months. LSTM time series analysis is considered the most suitable technique for demand forecasting to optimize e-procurement.
Expert system for heart disease based on electrocardiogram data using certainty factor with multiple rule Sumiati Sumiati; Hoga Saragih; Titik Abdul Rahman; Agung Triayudi
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 1: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i1.pp43-50

Abstract

Limited public health services in remote areas, where the lack of transportation infrastructure, facilities, communication facilities and minimal medical personnel, especially for areas with underdeveloped, foremost, and regular (3T) status. The limitation of medical personnel is one of the factors for the high mortality rate of heart disease. On the other hand, the development of information technology, especially in the field of computing, is very fast in the era of the industrial revolution 4.0, but not yet used optimally, especially in the health sector. This study aims to develop a system or software that can replace a doctor for the process of identifying heart defects based on an expert system. Expert system developed with the certainty factor with multiple rule approach. System testing is carried out from the results of the system validity with experts, so that the system test results produce a certainty factor value for a normal heart of 0.95 and an accuracy level of 95%, while the certainty factor (CF) value for an abnormal heart is 0.99 and produces an accuracy rate of 99%.
Recent development of smart traffic lights A’isya Nur Aulia Yusuf; Ajib Setyo Arifin; Fitri Yuli Zulkifli
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 1: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i1.pp224-233

Abstract

Increased traffic flow causes congestion, especially in large cities. Even though congestion is not unusual, traffic jams still result in very high economic and social losses. Several factors cause congestion, one of which is traffic lights. Therefore, a mechanism is needed so that traffic lights can intelligently and adaptively manage signal time allocation according to traffic flow conditions. A traffic light with this type of mechanism is known as a smart traffic light. Smart traffic light cycle settings can be grouped based on the traffic density, scenarios for emergency vehicles, and the interests of pedestrians. This paper analyzes the methods and technologies used in the development of smart traffic light technology from the perspective of these three situations as well as the development of smart traffic light technology in the future.
Lung cancer classification using fuzzy c-means and fuzzy kernel C-Means based on CT scan image Zuherman Rustam; Aldi Purwanto; Sri Hartini; Glori Stephani Saragih
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i2.pp291-297

Abstract

Cancer is one of the diseases with the highest mortality rate in the world. Cancer is a disease when abnormal cells grow out of control that can attack the body's organs side by side or spread to other organs. Lung cancer is a condition when malignant cells form in the lungs. To diagnose lung cancer can be done by taking x-ray images, CT scans, and lung tissue biopsy. In this modern era, technology is expected to help research in the field of health. Therefore, in this study feature extraction from CT images was used as data to classify lung cancer. We used CT scan image data from SPIE-AAPM Lung CT challenge 2015. Fuzzy C-Means and fuzzy kernel C-Means were used to classify the lung nodule from the patient into benign or malignant. Fuzzy C-Means is a soft clustering method that uses Euclidean distance to calculate the cluster center and membership matrix. Whereas fuzzy kernel C-Means uses kernel distance to calculate it. In addition, the support vector machine was used in another study to obtain 72% average AUC. Simulations were performed using different k-folds. The score showed fuzzy kernel C-Means had the highest accuracy of 74%, while fuzzy C-Means obtained 73% accuracy.
The implementation of intelligent systems in automating vehicle detection on the road Susanto Susanto; Dimas Dwi Budiarjo; Aria Hendrawan; Prind Triajeng Pungkasanti
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i3.pp571-575

Abstract

Indonesia is a country with a high population, especially in big cities. The road always crowded with various types of vehicles. Sometimes the growth of vehicles is not matched by road construction. During peak hours, too many vehicles can cause traffic jams on the road. The road is needed to be widened to accommodate the number of vehicles that pass each day. In order for road widening to be precise at locations that frequently occur in traffic jams, data on the number and classification of vehicles passing is required. Therefore, a system that can calculate and recognize the type of vehicle that passes is needed. The development of various studies on artificial intelligence especially about object detection can classify and calculate the type of vehicle. In this study, the authors used the you only look once (YOLO) object detection system using a convolution neural network (CNN) method to classify and count vehicles that pass automatically. The author uses a dataset of 600 images with 4 classes which are car, truck, bus, and motorbikes that pass through the road. The results showed that the YOLO object detection system can recognize objects consistently with accuracy more than 80% on CCTV video that installed on the road.
Boyer Moore string-match framework for a hybrid short message service spam filtering technique Arnold Adimabua Ojugo; David Ademola Oyemade
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i3.pp519-527

Abstract

Advances in technology and the proliferation of mobile device have continued to advance the ubiquitous nature of computing alongside their many prowess and improved features it brings as a disruptive technology to aid information sharing amongst many online users. This popularity, usage and adoption ease, mobility, and portability of the mobile smartphone devices have allowed for its acceptability and popularity. Mobile smartphones continue to adopt the use of short messages services accompanied with a scenario for spamming to thrive. Spams are unsolicited message or inappropriate contents. An effective spam filter studies are limited as short-text message service (SMS) are 140bytes, 160-characters, and rippled with abbreviation and slangs that further inhibits the effective training of models. The study proposes a string match algorithm used as deep learning ensemble on a hybrid spam filtering technique to normalize noisy features, expand text and use semantic dictionaries of disambiguation to train underlying learning heuristics and effectively classify SMS into legitimate and spam classes. Study uses a profile hidden Markov network to select and train the network structure and employs the deep neural network as a classifier network structure. Model achieves an accuracy of 97% with an error rate of 1.2%.
Enhancement of energy consumption estimation for electric vehicles by using machine learning Adnane Cabani; Peiwen Zhang; Redouane Khemmar; Jin Xu
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 1: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i1.pp215-223

Abstract

Three main classes are considered of significant influence factors when predicting the energy consumption rate of electric vehicles (EV): environment, driver behaviour, and vehicle. These classes take into account constant or variable parameters which influences the energy consumption of the EV. In this paper, we develop a new model taking into account the three classes as well as the interaction between them in order to improve the quality of EV energy consumption. The model depends on a new approach based on machine learning and especially k-NN algorithm in order to estimate the EV energy consumption. Following a lazy learning paradigm, this approach allows better estimation performance. The advantage of our proposal, in regards to mathematical approach, is taking into account the real situation of the ecosystem on the basis of historical data. In fact, the behavior of the driver (driving style, heating usage, air conditioner usage, battery state, etc.) impacts directly the EV energy consumption. The obtained results show that we can reach up to 96.5% of accuracy about the estimated of energy-consumption. The proposed method is used in order to find the optimal path between two points (departure-destination) in terms of energy consumption.
Empirical study prove that breadth-first search is more effective memory usage than depth-first search in frontier boundary cyclic graph Al Refai Mohammed N.; Jamhawi Zeyad
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i2.pp265-272

Abstract

Memory consumption, of opened and closed lists in graph searching algorithms, affect in finding the solution. Using frontier boundary will reduce the memory usage for a closed list, and improve graph size expansion. The blind algorithms, depth-first frontier Searches, and breadth-first frontier Searches were used to compare the memory usage in slide tile puzzles as an example of the cyclic graph. This paper aims to prove that breadth-first frontier search is better than depth-first frontier search in memory usage. Both opened and closed lists in the cyclic graph are used. The level number and nodes count at each level for slide tile puzzles are changed when starting from different empty tile location. Eventually, the unorganized spiral path in depth-first search appears clearly through moving inside the graph to find goals.

Page 37 of 173 | Total Record : 1722


Filter by Year

2012 2025


Filter By Issues
All Issue Vol 14, No 6: December 2025 Vol 14, No 5: October 2025 Vol 14, No 4: August 2025 Vol 14, No 3: June 2025 Vol 14, No 2: April 2025 Vol 14, No 1: February 2025 Vol 13, No 4: December 2024 Vol 13, No 3: September 2024 Vol 13, No 2: June 2024 Vol 13, No 1: March 2024 Vol 12, No 4: December 2023 Vol 12, No 3: September 2023 Vol 12, No 2: June 2023 Vol 12, No 1: March 2023 Vol 11, No 4: December 2022 Vol 11, No 3: September 2022 Vol 11, No 2: June 2022 Vol 11, No 1: March 2022 Vol 10, No 4: December 2021 Vol 10, No 3: September 2021 Vol 10, No 2: June 2021 Vol 10, No 1: March 2021 Vol 9, No 4: December 2020 Vol 9, No 3: September 2020 Vol 9, No 2: June 2020 Vol 9, No 1: March 2020 Vol 8, No 4: December 2019 Vol 8, No 3: September 2019 Vol 8, No 2: June 2019 Vol 8, No 1: March 2019 Vol 7, No 4: December 2018 Vol 7, No 3: September 2018 Vol 7, No 2: June 2018 Vol 7, No 1: March 2018 Vol 6, No 4: December 2017 Vol 6, No 3: September 2017 Vol 6, No 2: June 2017 Vol 6, No 1: March 2017 Vol 5, No 4: December 2016 Vol 5, No 3: September 2016 Vol 5, No 2: June 2016 Vol 5, No 1: March 2016 Vol 4, No 4: December 2015 Vol 4, No 3: September 2015 Vol 4, No 2: June 2015 Vol 4, No 1: March 2015 Vol 3, No 4: December 2014 Vol 3, No 3: September 2014 Vol 3, No 2: June 2014 Vol 3, No 1: March 2014 Vol 2, No 4: December 2013 Vol 2, No 3: September 2013 Vol 2, No 2: June 2013 Vol 2, No 1: March 2013 Vol 1, No 4: December 2012 Vol 1, No 3: September 2012 Vol 1, No 2: June 2012 Vol 1, No 1: March 2012 More Issue