cover
Contact Name
Imam Much Ibnu Subroto
Contact Email
imam@unissula.ac.id
Phone
-
Journal Mail Official
ijai@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN : 20894872     EISSN : 22528938     DOI : -
IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like genetic algorithm, ant colony optimization, etc); reasoning and evolution; intelligence applications; computer vision and speech understanding; multimedia and cognitive informatics, data mining and machine learning tools, heuristic and AI planning strategies and tools, computational theories of learning; technology and computing (like particle swarm optimization); intelligent system architectures; knowledge representation; bioinformatics; natural language processing; multiagent systems; etc.
Arjuna Subject : -
Articles 1,722 Documents
An improved fuzzy ant colony system for route selection based on real time traffic condition Erick Alfons Lisangan; Sean Coonery Sumarta
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 1: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i1.pp51-59

Abstract

With city conditions that often have congestion, a driver need to find a route of the many possible routes that may occur from origin to destination by considering several factors. The weaknesses of the ant algorithm is the dependency of required parameter values and must be set manually. This paper will make improvements to the fuzzy ant colony system (FACS) with minimize parameter dependency by using fuzzy logic to determine the probability of the next node visited by ants. There are four criteria or input variables for fuzzy inference system, that is “Pheromone Intensity”, “Distance”, “Vehicle Intensity”, and “Average Speed”. The routes generated by improved FACS (I-FACS) are more varied than the FACS algorithm. The best condition obtained by I-FACS was at point O/D= 112/34 where at 05:00, I-FACS was able to obtain the route with the best length compared to ACS and FACS. The result of the comparison of the route distance obtained shows that I-FACS is able to produce a better route by 4.16% than FACS by looking at the average distance difference on ACS. This method is expected to be a reference for the development of smart transportation in support of smart mobility, which is one of the components in the smart city concept.
Comparison between fuzzy kernel k-medoids using radial basis function kernel and polynomial kernel function in hepatitis classification Glori Stephani Saragih; Sri Hartini; Zuherman Rustam
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 1: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i1.pp60-65

Abstract

This paper compares the fuzzy kernel k-medoids using radial basis function (RBF) and polynomial kernel function in hepatitis classification. These two kernel functions were chosen due to their popularity in any kernel-based machine learning method for solving the classification task. The hepatitis dataset then used to evaluate the performance of both methods that were expected to provide an accurate diagnosis in patients to obtain treatment at an early phase. The data were obtained from two hospitals in Indonesia, consisting of 89 hepatitis-B and 31 hepatitis-C samples. The data were analyzed using several cases of k-fold cross-validation, and the performances were compared according to their accuracy, sensitivity, precision, F1-Score, and running time. From the experiments, it was concluded that fuzzy kernel k-medoids using RBF kernel function is better compared to polynomial kernel function with the 6% increment of accuracy, 13% enhancement of sensitivity, and 5% improvement in F1-Score. On the other side, the precision of fuzzy kernel k-medoids using polynomial kernel function is 2% higher than using the RBF kernel function. According to the results, the use of RBF or polynomial kernel function in fuzzy kernel medoids can be considered according to the primary goal of the classification.
Hepatitis classification using support vector machines and random forest Jane Eva Aurelia; Zuherman Rustam; Ilsya Wirasati; Sri Hartini; Glori Stephani Saragih
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i2.pp446-451

Abstract

Hepatitis is a medical condition defined by inflammation of the liver. It can be caused by infection of the liver by hepatitis viruses or is of unknown aetiology. There are 5 main hepatitis viruses, such as virus types A, B, C, D and E. The infection may occur with limited or no symptoms, but also may include some symptoms like abdominal pain, dark urine, extreme fatigue, jaundice, nausea or vomiting. Because Indonesia is a large archipelago, the prevalence of viral infections varies greatly by region of acute hepatitis patients. This research uses data of hepatitis examination result with amount of 113 data and 5 features. The method that used is support vector machines (SVM) and random forest method. SVM is the classification method that uses discriminant hyper-plane, dividing to classes. meanwhile, random forest is a tree-based ensemble depending on a collection of random variables. SVM and random forest (RF) are applied to predict hepatitis data, and then the results will be compared.
A neural network combined with sliding mode controller for the two-wheel self-balancing robot Duc-Minh Nguyen; Van-Tiem Nguyen; Trong-Thang Nguyen
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i3.pp592-601

Abstract

This article presents the sliding control method combined with the selfadjusting neural network to compensate for noise to improve the control system's quality for the two-wheel self-balancing robot. Firstly, the dynamic equations of the two-wheel self-balancing robot built by Euler–Lagrange is the basis for offering control laws with a neural network of noise compensation. After disturbance-compensating, the sliding mode controller is applied to control quickly the two-wheel self-balancing robot reached the desired position. The stability of the proposed system is proved based on the Lyapunov theory. Finally, the simulation results will confirm the effectiveness and correctness of the control method suggested by the authors.
Fish survival prediction in an aquatic environment using random forest model Md. Monirul Islam; Mohammod Abul Kashem; Jia Uddin
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i3.pp614-622

Abstract

In the real world, it is very difficult for fish farmers to select the perfect fish species for aquaculture in a specific aquatic environment. The main goal of this research is to build a machine learning that can predict the perfect fish species in an aquatic environment. In this paper, we have utilized a model using random forest (RF). To validate the model, we have used a dataset of aquatic environment for 11 different fishes. To predict the fish species, we utilized the different characteristics of aquatic environment including pH, temperature, and turbidity. As a performance metrics, we measured accuracy, true positive (TP) rate, and kappa statistics. Experimental results demonstrate that the proposed RF-based prediction model shows accuracy 88.48%, kappa statistic 87.11% and TP rate 88.5% for the tested dataset. In addition, we compare the proposed model with the state-of-art models J48, RF, k-nearest neighbor (k-NN), and classification and regression trees (CART). The proposed model outperforms than the existing models by exhibiting the higher accuracy score, TP rate and kappa statistics.
Automatic amyotrophic lateral sclerosis detection using tunable Q-factor wavelet transform Abdelouahad Achmamad; Abdelali Belkhou; Atman Jbari
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 9, No 4: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v9.i4.pp744-756

Abstract

Early diagnosis of amyotrophic lateral sclerosis (ALS) based on electromyography (EMG) is crucial. The processing of a non-stationary EMG signal requires powerful multi-resolution methods. Our study analyzes and classifies the EMG signals. In the present work, we introduce a novel flexible method for classification of EMG signals using tunable Q-factor wavelet transform (TQWT). Different sub-bands generated by the TQWT technique were served to extract useful information related to energy and then the calculated features were selected using a filter selection (FS) method. The effectiveness of the feature selection step resulted not only in the improvement of classification performance but also in reducing the computation time of the classification algorithm. The selected feature subsets were used as inputs to multiple classifier algorithms, namely, k-nearest neighbor (k-NN), least squares support vector machine (LS-SVM) and random forest (RF) for automated diagnosis. The experimental results show better classification measures with k-NN classifier compared with LS-SVM and RF. The robustness of the classification task was tested using a ten-fold cross-validation method. The outcomes of our proposed approach can be exploited to aid clinicians in neuromuscular disorders detection.
Stock price forecast of macro-economic factor using recurrent neural network M. Reza Pahlawan; Edwin Riksakomara; Raras Tyasnurita; Ahmad Muklason; Faizal Mahananto; Retno A. Vinarti
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 1: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i1.pp74-83

Abstract

The stock market is one of the investment choices that always have traction from time to time. Aside from being a means of corporate funding, investing in the stock market can benefit investors. Investing also has a higher risk because the pattern of stock prices is volatile, which is caused by internal and external factors. One external factor that affects stock prices is the macro-economic, where these factors are events that occur in a country where one of the economic sectors affected is stock prices. Investors often feel confused about the right time in decisions making related to buying or selling stock. One way to look at how the prospect of stock prices is a stock price forecasting activity. For this study, we will be making use of the recurrent neural network (RNN) to forecast stock prices for the next periods. This research involves two variables: the closing stock price and the rupiah exchange rate against the dollar for the daily period. We achieve a MAPE value of 1.546% for RNN model without the variable foreign exchange rate and 1.558% for the RNN model that uses the foreign exchange rate against the dollar.
Handling the imbalanced data with missing value elimination SMOTE in the classification of the relevance education background with graduates employment Anita Desiani; Sugandi Yahdin; Annisa Kartikasari; Irmeilyana Irmeilyana
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i2.pp346-354

Abstract

The imbalanced data affect the accuracy of models, especially for precision and sensitivity, it makes difficult to find information on minority class. The problem is identified in the tracer study dataset Universitas Sriwijaya that has 2934 data. The label attribute is divided into several label classes, namely not tight, somewhat-tight, tight, very tight, and tightest. The number of the tightest and very tight is 27% and 38.6% of the number majority classes. In the study, the SMOTE is combined with eliminating the missing value of data to handle the imbalanced data. The method was evaluated by the classification methods KNN, ANN, and C4.5. The results of these methods show a significant increase in accuracy as a whole and a significant increase in the precision and sensitivity of minority classes. The precision and sensitivity of both the majority and minority are not too different, although the number of the minority is very less compared to the majority class. the information on minority classes can be obtained with quite high precision and sensitivity. As a conclusion, the proposed method is passably to improve accuracy and greatly affects the increase in sensitivity and precision.
Estimating probability of banking crises using random forest Sri Hartini; Zuherman Rustam; Glori Stephani Saragih; María Jesús Segovia Vargas
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i2.pp407-413

Abstract

Banks have a crucial role in the financial system. When many banks suffer from the crisis, it can lead to financial instability. According to the impact of the crises, the banking crisis can be divided into two categories, namely systemic and non-systemic crisis. When systemic crises happen, it may cause even stable banks bankrupt. Hence, this paper proposed a random forest for estimating the probability of banking crises as prevention action. Random forest is well-known as a robust technique both in classification and regression, which is far from the intervention of outliers and overfitting. The experiments were then constructed using the financial crisis database, containing a sample of 79 countries in the period 1981-1999 (annual data). This dataset has 521 samples consisting of 164 crisis samples and 357 non-crisis cases. From the experiments, it was concluded that utilizing 90 percent of training data would deliver 0.98 accuracy, 0.92 sensitivity, 1.00 precision, and 0.96 F1-Score as the highest score than other percentages of training data. These results are also better than state-of-the-art methods used in the same dataset. Therefore, the proposed method is shown promising results to predict the probability of banking crises.
Empirical Bayesian network to improve service delivery and performance dependability on a campus network Arnold Adimabua Ojugo; Andrew Okonji Eboka
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i3.pp623-635

Abstract

An effective systemic approach to task will lead to efficient communication and resource sharing within a network. This has become imperative as it aids alternative delivery. With communication properly etched into the fabrics of today’s society via effective integration of informatics and communication technology, the constant upgrades to existing network infrastructure are only a start to meeting with the ever-increasing challenges. There are various criteria responsible for network performance, scalability, and resilience. To ensure best practices, we analyze the network and select parameters required to improve performance irrespective of bottlenecks, potentials, and expansion capabilities of the network infrastructure. Study compute feats via Bayesian network design alongside upgrades implementation to result in a prototype design, capable of addressing users need(s). Thus, to ensure functionality, the experimental network uses known simulation kits such as riverbed modeler edition 17.5 and cisco packet tracer 6.0.1-to conduct standardized tests such as throughput test, application response-time test, and availability test.

Page 35 of 173 | Total Record : 1722


Filter by Year

2012 2025


Filter By Issues
All Issue Vol 14, No 6: December 2025 Vol 14, No 5: October 2025 Vol 14, No 4: August 2025 Vol 14, No 3: June 2025 Vol 14, No 2: April 2025 Vol 14, No 1: February 2025 Vol 13, No 4: December 2024 Vol 13, No 3: September 2024 Vol 13, No 2: June 2024 Vol 13, No 1: March 2024 Vol 12, No 4: December 2023 Vol 12, No 3: September 2023 Vol 12, No 2: June 2023 Vol 12, No 1: March 2023 Vol 11, No 4: December 2022 Vol 11, No 3: September 2022 Vol 11, No 2: June 2022 Vol 11, No 1: March 2022 Vol 10, No 4: December 2021 Vol 10, No 3: September 2021 Vol 10, No 2: June 2021 Vol 10, No 1: March 2021 Vol 9, No 4: December 2020 Vol 9, No 3: September 2020 Vol 9, No 2: June 2020 Vol 9, No 1: March 2020 Vol 8, No 4: December 2019 Vol 8, No 3: September 2019 Vol 8, No 2: June 2019 Vol 8, No 1: March 2019 Vol 7, No 4: December 2018 Vol 7, No 3: September 2018 Vol 7, No 2: June 2018 Vol 7, No 1: March 2018 Vol 6, No 4: December 2017 Vol 6, No 3: September 2017 Vol 6, No 2: June 2017 Vol 6, No 1: March 2017 Vol 5, No 4: December 2016 Vol 5, No 3: September 2016 Vol 5, No 2: June 2016 Vol 5, No 1: March 2016 Vol 4, No 4: December 2015 Vol 4, No 3: September 2015 Vol 4, No 2: June 2015 Vol 4, No 1: March 2015 Vol 3, No 4: December 2014 Vol 3, No 3: September 2014 Vol 3, No 2: June 2014 Vol 3, No 1: March 2014 Vol 2, No 4: December 2013 Vol 2, No 3: September 2013 Vol 2, No 2: June 2013 Vol 2, No 1: March 2013 Vol 1, No 4: December 2012 Vol 1, No 3: September 2012 Vol 1, No 2: June 2012 Vol 1, No 1: March 2012 More Issue