cover
Contact Name
Triwiyanto
Contact Email
triwiyanto123@gmail.com
Phone
+628155126883
Journal Mail Official
editorial.jeeemi@gmail.com
Editorial Address
Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya Jl. Pucang Jajar Timur No. 10, Surabaya, Indonesia
Location
Kota surabaya,
Jawa timur
INDONESIA
Journal of Electronics, Electromedical Engineering, and Medical Informatics
ISSN : -     EISSN : 26568632     DOI : https://doi.org/10.35882/jeeemi
The Journal of Electronics, Electromedical Engineering, and Medical Informatics (JEEEMI) is a peer-reviewed open-access journal. The journal invites scientists and engineers throughout the world to exchange and disseminate theoretical and practice-oriented topics which covers three (3) majors areas of research that includes 1) Electronics, 2) Biomedical Engineering, and 3)Medical Informatics (emphasize on hardware and software design). Submitted papers must be written in English for an initial review stage by editors and further review process by a minimum of two reviewers.
Articles 270 Documents
Sensor Accuracy Analysis on Incubator Analyzer to Measure Noise and Airflow Parameters Arrum Sekarwati; Syaifudin Syaifudin; Torib Hamzah; Shubhrojit Misra
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 3 (2022): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v4i3.227

Abstract

Infant incubators are equipment to maintain a stable body temperature for premature babies. Premature babies need room conditioning that is close to conditions in the womb. Room conditioning is carried out in a baby incubator by providing a stable temperature, relative humidity, and measured air flow. This parameter must be controlled so as not to exceed the threshold that will harm the baby. Periodic calibration should be applied to the infant incubator to monitor its function. To ensure the availability of baby incubators according to service standards, it is necessary to conduct test (calibrate) using an incubator analyzer. The purpose of this study is to conduct further research on the incubator analyzer that focuses on discussing the accuracy of noise and airflow sensors with the gold standard. In this study, an experiment was carried out for the sensitivity level of several sensors that had been treated by giving treatment to sensors to choose sensors with good sensitivity to be assembled into one in the incubator analyzer module. The noise sensors (KY-037 and Analog Sound Sensor V2.2) were further compared with the values ​​on the sound level meter and the airflow sensor (D6F-V03A1) was compared with the anemometer. Sensors whose values ​​are close to the comparison values ​​were selected to be integrated into the incubator analyzer module. The incubator analyzer module used Arduino Mega2560 as a data processor and was equipped with an SD Card for the data storage. The built incubator analyzer module was also compared to the Fluke INCU II gold standard for data analysis. The results showed that the Analog Sound Sensor V2.2 had the highest error value (-4.6%) at 32°C and the D6F-V03A1 had the ability to measure sensitivity, where the results were more accurate than INCU II. Based on the error value of the noise sensor, the V2.2 sensor can be applied to measure noise in the baby incubator and the D6F-V03A1 airflow sensor produced an accuracy of up to 3 digits behind the comma which is more accurate than the standard module. The results of the INCU analyzer from this study can be used to calibrate the baby incubator, so that the certainty of the feasibility of the baby incubator is guaranteed. This research can be used as a reference for other researchers who will develop research on incubator analyzers in the future.
Implementation Of Fuzzy Logic On Turbine Ventilators As Renewable Energy Fahmi Ivannuri; Anggara Trisna Nugraha
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 3 (2022): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v4i3.236

Abstract

Energy needs in Indonesia in particular and in the world in general continue to increase. One of the sources of electricity supply, PLTA together with steam power plants (PLTU) and gas power plants (PLTG) indeed play an important role in the availability of electricity. Indonesia, which is an archipelagic country and one of the countries located on the equator, is a factor that Indonesia has abundant wind energy potential. The electrical energy needs of remote communities can be met. Turbine ventilator is a device that functions to circulate air which is placed on the roof of the building that functions as ventilation in residential and industrial buildings. Based on previous research, there are those who examine the use of turbine ventilators as power plants, but there are still many shortcomings that need to be fixed. turbine ventilator that is used to catch the wind and drive the generator, by connecting the wind turbine using a v-belt so that the rotation produced by the generator is maximized. Then the generator produces electrical energy.
Planning a Protection Coordination System Against Over Current Relays and Ground Fault Relays Using the NN Method Siti Zaibah; Anggara Trisna Nugraha; Fortunaviaza Habib Ainudin
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 4 (2022): October
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v4i4.239

Abstract

PT PAMA PERSADA is one of the power plants located in Kalimantan, Barunang which has 2 feeders. In one of the feeders, protection coordination often occurs. These disturbances can hamper the performance of the company PT PAMA PERSADA. This turned out to be a disturbance in the coordination of protection types of overcurrent relays and ground fault relays. Where in the end it takes an evaluation analysis of the relay setting coordination using the Electrical Transient Analysis Program (ETAP) 19.0.1 software on the electrical system. The disturbance that occurs is in feeder 2 which is divided into KM30 and Parilahung substations. This disturbance occurs because the relay coordination trips work simultaneously. From the results of the ETAP simulation, the power value is 4.164 KW, the reactive power is 780.3 KVAR, the apparent power is 4.237 KVA, and the cos phi value used is 0.9. Meanwhile, the protection coordination setting meets the IEEE 60255 standard with a grading time of 0.2 – 0.6 second. After being successfully simulated with the Electrical Transient Analysis Program (ETAP) 19.0.1 software, it was continued with the Matlab software which was used as an optimization of the relay settings and the use of the working effect of the NN (Neural Network) method. In accordance with the MSE (Main Square Error) value it reached 0.33452.
Design And Fabrication of Temperature and Humidity Stabilizer on Low Voltage Distribution Panel with PLC-Based Fuzzy Method to Prevent Excessive Temperature and Humidity on The Panel Anggara Trisna Nugraha; Reza Fardiyan As'ad; Adianto; Vugar Hacimahmud Abdullayev
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 3 (2022): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v4i3.241

Abstract

Distribution panel is equipment that functions to receive electrical energy from PLN and subsequently distributes, as well as controls the distribution of electrical energy through the main and branch panel circuits to branch Distribution Panel or directly through the final load circuit. One of the problems with the Distribution Panel is the occurrence of fluctuating voltage changes and disturbances caused by condensation due to high humidity values. Based on previous research, the solution to minimize this problem is by optimizing the temperature and humidity on the Distribution Panel. So, in this research, we examine the effect of fan and heater control on the temperature and humidity of the Distribution Panel. The aim of this research is to fabrication the prototype that can be prevent the presence of excess temperature and humidity that does not meet applicable standards. So that it is expected to minimize the occurrence of hazards due to excessive temperature and humidity. In this research, it was found that the fan control using the fuzzy method can change the temperature of the panel room from 42.06oC to 32.82oC in a period of 440 seconds. However, the fan control with simple logic can only change the temperature of the panel room which is all 42.22oC to 35.05oC in 440 seconds. So it can be concluded that the fan control with the fuzzy method can reduce the temperature faster than the fan control with simple logic. Based on the graph on the panel room temperature stability test, it was found that the level of temperature stability in the room could be better controlled with fan control with the fuzzy method than using fan control with simple logic. Heater control system can reduce humidity levels from 95.14%RH to 55.25%RH within 160 seconds.
Analysis of Temperature Stability and Accuracy on the Design of Thermometer Calibrator Based on Fuzzy Logic And On/Off Control Yunik Pujiastuti; Andjar Pudji; Singgih Yudha Setiawan; Farid Amrinsani; Khongdet Phasinam
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 3 (2022): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v4i3.244

Abstract

A thermometer is a medical device used to measure body temperature. To maintain the accuracy of the thermometer measurement results, periodic calibration is required. Calibration is an activity to determine the conventional correctness of the indicator values of measuring instruments and measuring materials by comparing them with measurement standards that can be traced to national and international standards for units of measure and/or international and certified reference materials. Based on the results of the identification of chronological problems that have been observed, a body thermometer that measures body temperature is needed so and a calibrator is needed to maintain the accuracy of the thermometer. The purpose of this study was to analyze the Temperature Stability and Accuracy of the Body Thermometer Calibrator Based on on-Off Control and Fuzzy Logic Control. The contribution of this research to this tool will use the development of a fuzzy logic control method to produce temperature stability in the Body Thermometer Calibrator (Digital). The method used in this study used fuzzy control and on-off control. The results of this study from the suitability test obtained a maximum error of 0.2% in the fuzzy control and 0.6% in the On-Off control. The average rise time difference for the two controls was 13.53 Seconds. The average settling time difference is 130.46 seconds. The results of this study can be concluded that the Fuzzy System is better than the On / Off system so the Fuzzy system is more suitable for thermometer calibration media.
Implementation of Voltage Stabilizers on Solar Cell System Using Buck-Boost Converter Irgi Achmad; Anggara Trisna Nugraha
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 3 (2022): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v4i3.246

Abstract

Electricity is one of the basic needs of modern human life and is already so integrated into everyday life. This is understandable given the coal's ample resources. Another factor that influences the growth of coal use is that coal plants are designed asa basic burden because the price of coal is relatively cheaper. However, coal's existence as fuel for power plants is on the decline and is not renewables. One of the applications of renewable energy potential is solar power generation technology. On this system using solar panels using 30 wp power. Solar dependence on the environment affects the change in output values in hybrid plant systems, resulting in easy damage to both domestic and industrial appliances or in battery storage systems, so a mechanism is needed to stabilize the output voltage supplied to the battery or load. So, out of this renewable energy potential, it creates innovation Implementation of Voltage Stabilizers on Solar Cell System Using Buck-Boost Converter. Aided by current and voltage sensors controlled by arduino uno so that they can insulate input and output from buck-boost converter. Results from the testing of this device indicate that the buck-boost converter is able to stabilize output output from solar panels with a 14.4 volt set of points. The average efficiency obtained at buck-converter converter testing at buck mode is 85.4 %. On boost mode is 80%. On buck-boost mode is 79.2%.
Accuracy Analysis on Dual Pressure (Positive and Negative) Calibrator Design to Investigate the Sensor Response Abdi Wibowo; Triana Rahmawati; Priyambada Cahya Nugraha; I Dewa Gede Hari Wisana; Honey Honey; Mansour Asghari
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 3 (2022): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v4i3.247

Abstract

Calibration is an activity to determine the conventional correctness of the value of measuring instrument designation and measuring material by comparing against the measuring standards that are traced to national or international standards. A sphygmomanometer is a device used to measure blood pressure. Suction pump is a tool to suck various types of fluid formed from the body's secretion process that under certain conditions need to be cleaned. DPM (Digital Pressure Meter) is a tool for calibrating sphygmomanometers and suction pumps. Therefore, it takes a calibrator device to calibrate both tools. The purpose of this study was to determine the sensor response and analyze the accuracy of the design of a dual pressure calibrator (+ and -) that can be used for two devices at once (sphygmomanometer and suction pump) using one sensor (pss-C01V-R18 autonics). The research was conducted at the Campus of the Department of Electrical Engineering Of The Ministry of Health Surabaya, first the data was taken from three different brands of sphygmomanometer and suction pump, the second data was taken using module calibrators, and the third data collection from modules and comparison tools (DPM). In this study successfully measured positive and negative pressure with autonics sensors, the results obtained are accurate in accordance with the results of standard tools. The result of this tool can be used for dual pressure calibrators using autonics sensors.
Analysis of the Geiger Muller Ability on the Effect of Collimation Area and Irradiation Distance on the Dose of X-Ray Machine Measurements Wahyu Pratama; Muhammad Ridha Mak'ruf; Tri Bowo Indrato; Endro Yulianto; Lamidi Lamidi; Maduka Nosike; Sambhrant Srivastava
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 3 (2022): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v4i3.249

Abstract

Radiation cannot be felt directly by the five human senses. For the occupational safety and security, a radiation worker or radiographer is endeavored to receive radiation dose as minimum as possible, which is by monitoring the radiation using a radiation measuring device. The purpose of this study was to analyze the effect of collimation area and irradiation distance on x-ray dose measurement using Geiger Muller. In this case, the author tried to make a dosimeter by using the Muller Geiger module and displayed it on a personal computer. This research employed Muller Geiger sensor to detect X-ray dose and velocity, Arduino for data programming, Bluetooth HC-05 for digital communication tool between hardware and personal computer, and personal computer to display the reading. Current research was conducted using Pre-Experimental research design. Based on the results of data collection and comparison with the standard tool, it can be concluded that the greater the tube current setting (mA), the greater the dose and rate of radiation exposure at a distance of 100cm with 50KV and 70KV settings, and a distance of 150cm with 50KV settings. However, it is inversely proportional to the measurement results at a distance of 150cm with a 70KV setting. The results of this study are further expected to determine the ability of Geiger Muller to measure the dose to the irradiation distance or collimation area and can be used as a reference for further research in this field.
A Review on EMI Issues in High speed Designs and Solutions Uma Maheswari Y; Amudha A; Ashok Kumar L
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 4 (2022): October
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v4i4.253

Abstract

As data speed on printed circuit boards have increased, new difficulties have evolved and necessitating the development of new analytical methodologies and solutions. It will be necessary to continue research in order to keep up with the ever-increasing data rates and smaller form factors. The literature and issue pertaining to the EMI/EMC of printed circuit boards are reviewed in detail in this paper for the purpose of providing an overview and to assist people looking for more extensive references related to this area. This review includes EMI issues related to high speed PCB, EMI measurement techniques using software and hardware and solution for the EMI issues. Also reviewed the use of electromagnetic band gap (EBG) technology to minimize electromagnetic interference (EMI). In recent years, there have been a number of articles describing the several uses of EBG for the purpose of blocking undesired radiation at discontinuities. Various EBG structure performances with its applications are analysed and detailed.
Reduction of Feature Extraction for COVID-19 CXR using Depthwise Separable Convolution Network Zendi Iklima; Trie Maya Kadarina; Rinto Priambodo
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 4 (2022): October
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v4i4.255

Abstract

A Convolutional Neural Network (CNN) classifier is generally utilized to classify an image tensor according to the mapped labels. The simplification of the classifier causes CNN to be often used to classify images, especially in the biomedical field. Thus, CNN is widely used to classify computer tomography (CT) and chest X-ray (CXR) images against the mapped labels. Several transfer learning models were implemented to classify CXR images for preliminary detection of COVID-19 infection, e.g., ResNet, Inception, Xception, etc. However, a transfer learning model has a maximum and minimum input resolution. Thus, the computational cost tends to be huge and unable to be optimized. Therefore, A custom CNN model can be a solution to reduce computational costs by configuring the feature extraction layers. This study proposed an efficient reduction of feature extraction for COVID-19 CXR namely Depthwise Separable Convolution Network. Furthermore, numerous strategies were adopted to lower the computational cost while retaining accuracy, including customizing the Batch Normalization (BN) layer and replacing the convolution layer with a separable convolution layer. The proposed model successfully reduced the feature extraction represented by the decreases in trainable parameters from 28.640 trainable parameters to 4.640 trainable parameters. The depthwise separable convolution effectively retains the performance accuracy 72.96%, loss 12.43%, recall 74.67%, precision 77.67%, and F1-score 75.33%. The CXR augmentation is also successfully increase the performance accuracy 74.55%, loss 11.37%, recall 77.67%, precision 79.56%, and F1-score 78.33%.

Page 8 of 27 | Total Record : 270