cover
Contact Name
Triwiyanto
Contact Email
triwiyanto123@gmail.com
Phone
+628155126883
Journal Mail Official
editorial.jeeemi@gmail.com
Editorial Address
Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya Jl. Pucang Jajar Timur No. 10, Surabaya, Indonesia
Location
Kota surabaya,
Jawa timur
INDONESIA
Journal of Electronics, Electromedical Engineering, and Medical Informatics
ISSN : -     EISSN : 26568632     DOI : https://doi.org/10.35882/jeeemi
The Journal of Electronics, Electromedical Engineering, and Medical Informatics (JEEEMI) is a peer-reviewed open-access journal. The journal invites scientists and engineers throughout the world to exchange and disseminate theoretical and practice-oriented topics which covers three (3) majors areas of research that includes 1) Electronics, 2) Biomedical Engineering, and 3)Medical Informatics (emphasize on hardware and software design). Submitted papers must be written in English for an initial review stage by editors and further review process by a minimum of two reviewers.
Articles 270 Documents
Analysis of the Effectiveness of Using Digital Filters in Electronic Stethoscopes Andi Fathkur Rohman; Muhammad Ridha Mak'ruf; Triwiyanto Triwiyanto; Lamidi Lamidi; Phuoc-Hai Huynh
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 4 (2022): October
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v4i4.256

Abstract

The heart sound produced in some cases of the disease shows a certain pattern. The purpose of this study was to design an electronic stethoscope for cardiac auscultation with the following display. The contribution in this study is being able to show certain patterns that can be diagnosed in the sound signal. So that the pattern can be known when there is a heart disease disorder, an electronic stethoscope will be made for auscultation of the next display, making it easier for users to diagnose heart disease. The heart sound is obtained from the mechanical activity of the heart which is tapped by a condenser mic. The heart sound will be held in a pre-amp circuit, then the filters used are High Pass Filters and Low Pass Filters with an interrupted frequency of 20-95 Hz. The output of the filter circuit will enter the booster circuit. Then it will be processed by the microcontroller. In processing the data that will be displayed on Nextion and Speaker, the author uses Arduino Mega. Based on the test, it can be seen that the digital filter has a slight error rate because it removes the most noise, while in the analog filter there is still a lot of noise. The results of the research that has been done can be implemented using a system that really supports the needs.
Comparative Analysis of PID and Fuzzy Temperature Control System on Infant Warmer Abdul Majid; Endang Dian Setioningsih; Abd Kholiq; Singgih Yudha Setiawan; Anilkumar Suthar
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 4 (2022): October
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v4i4.257

Abstract

Infant Warmer is a life support equipment that is used to provide heat relief for normal and premature babies who are unable to maintain their own body temperature when in a new environment. The purpose of this research is to design an infant warmer using the DS18B20 sensor to analyze the efficiency and effectiveness between PID and fuzzy temperature control. This study used temperature settings of 34 °C, 35 °C, and 36 °C. The tool used for reference from standard measurements uses a standard infant warmer. When using the PID control used in the microcontroller detects the set temperature difference value with the actual temperature, the difference in value will be input to the PID control. The error value becomes PWM input on the PID control, the PID control will process the error value and determine the output value for the heater, the temperature sensor will read the actual temperature value which will be compared again with the temperature setting, the PID control will continue to process the error value and determine the PWM output value. until the actual temperature is equal to the setting temperature or the error value is zero
Enhancing the Electrocardiogram Signal Quality by Applying Butterworth Infinite Impulse Response Filter 8th Order Nindia Rena Saputri; Sari Luthfiyah; Dyah Titisari; Bedjo Utomo; Lusiana Lusiana; Triwiyanto Triwiyanto; Faheem Ahmad Reegu; Wahyu Caesarendra
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 4 (2022): October
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v4i4.259

Abstract

The electrocardiogram (ECG) of the human body is an important basis in heart function as well as the diagnosis of cardiovascular diseases, which has a very vital role in clinical diagnosis. Obtaining high-quality ECG signals with a portable remote ECG acquisition system is a big challenge given limited resources. According to the World Health Organization (WHO), disorders of the cardiovascular system still rank high, causing about 31% of deaths globally. This is because the symptoms of cardiovascular disease cannot be seen directly, but rather by conducting an electrocardiograph (ECG) examination. The purpose of this research is to develop and analysis the ECG signal by comparing the 2nd order AD8232 module analogue filter with the 8th order Butterworth digital filter by applying infinite impulse response. This research uses a multiplexer circuit for switching leads, AD8232 ECG module, 50Hz notch filter circuit, non-inverting amplifier, adder, Arduino Mega 2560, USB module, and an application to display digital signals, namely Delphi 7. Signal acquisition is done by monitoring for one minute. Data collection was carried out with 5 respondents 5 times on each lead. The results of the data collection can be concluded that 80% of digital filters display smoother signals for ECG signals than analogue filters.
Design and Build a Distance and Heart Rate Monitoring System on a Dynamic Bike Integrated with Power Generating System Anggara Trisna Nugraha
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 4 (2022): October
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v4i4.260

Abstract

One of the organs of the body that must be protected is the heart. The heart is an organ of the human body that performs important functions to sustain life. Maintaining health is a top priority and requires careful attention, so small abnormalities in the heart can have a big impact on our body's performance [2]. In addition to the rapid development of the field of health sciences, this can affect not only aspects of medicine, but also other supporting fields of science such as chemistry, biology, pharmacy and other scientific fields. Don't forget that informatics plays an important role in maintaining, monitoring, diagnosing, and managing health, especially heart health. With the development of medical science, people are always active in improving their physical fitness in order to remain optimal in the current new normal era. After the Covid-19 pandemic, many things change to adapt to the environment around us. One of the implications of the adjustment in the new normal era is the use of transportation for social distancing. Many people use environmentally friendly and healthy modes of transportation, such as bicycles, to travel. In 2016, Deshmukh and colleagues conducted a study entitled 'Design of a Walking Bike', one of several developments in the title of research that discusses the design of a treadmill bicycle [5]. In this study, a mechanical test and design of a treadmill bicycle was carried out in the form of 3D modeling which had been integrated with a power generating system in the form of adding a BLDC motor to the rear wheel. By following the rapid development of technology. The authors investigated the effect of treadmill cycling on heart rate monitoring using the MAX30102 sensor. The two initial values ​​can easily be derived from the results of the conducted studies. The first test has an error rate of 12.64% and the second test has an error rate of 22.09%. From the results of these tests, the author is in further investigation by adding the Kalman filtering method to the MAX30102 sensor. Then, the output generated from this power generating system can charge the battery up to 12.95 volts with a period of 25 minutes of testing. From the results of these tests, the author is in further investigation by adding the Kalman filtering method to the MAX30102 sensor. Then, the output generated from this power generating system can charge the battery up to 12.95 volts with a period of 25 minutes of testing. From the results of these tests, the author is in further investigation by adding the Kalman filtering method to the MAX30102 sensor. Then, the output generated from this power generating system can charge the battery up to 12.95 volts with a period of 25 minutes of testing.
Internet of (Healthcare) Things Based Monitoring for COVID-19+ Quarantine/ Isolation Subjects Using Biomedical Sensors, A Lesson from the Recent Pandemic, and an Approach to the Future. Azarudeen Mohamed Arif; Abubaker M. Hamad; Montasir Mohamed Mansour
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 5 No 1 (2023): January
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v5i1.267

Abstract

The COVID-19+ pandemic has brought into keen focus the necessity to utilize and enforce our digital infrastructure for remote patient monitoring based on IoT (Internet of Things) technology since quarantines and isolations are playing a vital role in containing its spread. As of date, many viral tests and vaccines are in use while few drugs are in experimental stages, but there is always need for possibilities for increasing reliability of disease detection and monitoring at both levels of individual and society, and such aim can be supported by wearable biomedical sensors devices. Previously, wearable devices have been used to monitor physiological parameters during daily human living activities. Still, the investment of such technologies toward predicting infection by COVID-19+ remains essential to alert potential patients and start sequence of health systems intervention. It was found that wearable devices increased patients’ compliance to healthcare advice. Thus, in this perspective review, we have proposed an IoT based system to monitor the quarantine / isolation subjects during COVID-19+ and similar pandemic and quarantine observation. This wearable prototype, associated with the bundled mobile app, act to reports and tracks/monitoring the quarantined individuals. IoT based quarantine/isolation monitoring system is contact-free that could benefit especially healthcare professionals to lower the risk of exposure to infective pathogens. Current manuscript describes clinically relevant physiological human parameters that can be measured by wearable biomedical sensors and monitored based on IoT technology and their role in health tracking, stability, and recovery of COVID-19++ve individuals and front-line health workers. This paper aimed at initiation of an approach among front-line healthcare workers as well as biomedical engineers for developing digital healthcare platforms of monitoring and managing such pandemic.
Power Added Efficiency Enhancement in a 2.4 GHz Class E Power Amplifier in 0.13µm CMOS Technology Hemad Heidari Jobaneh
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 5 No 1 (2023): January
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v5i1.273

Abstract

Power-Added-Efficiency (PAE) is one of the most significant factors by which the performance of a Power Amplifier (PA) can be scrutinized. A new approach to increase PAE is proposed in this paper. Plus, the trade-off between increasing VDD for more output power and more PAE is examined. In addition, new and precise calculations for both output voltage and output power are achieved. Furthermore, the concept of using an equivalent circuit of a transformer is described to justify the new way to increase PAE. The designed Power Amplifier (PA) operates at 2.4GHz. The simulation is performed by Advanced Design System (ADS) and MATLAB. Plus, the TSMC 0.13 µm CMOS process is utilized to fulfil the procedure. The class E PA is designed to gain two different objectives, including more output power and more PAE. With VDD= 1.18 V the output power is 19.52 dBm and PAE is 68.5 %. Ultimately, with VDD=4.4 V the output power is 31.24 dBm and PAE is 62.7 %.
The Performance Analysis of the Infrared Photodiode Sensor to Infusion Set on Infusion Device Analyzer Machine Anisa Rahma Astuti; Syaifudin; Triana Rahmawati; Khongdet Phasinam
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 5 No 1 (2023): January
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v5i1.274

Abstract

Infusion pumps and syringe pumps are devices used to administer liquid medicines to patients. The frequency of using the infusion pump and syringe pump in the long term will affect the accuracy of the tool. Accuracy is very important in dosing to patients in critical conditions who require intensive care to prevent fluid balance in the body. Therefore, periodic calibration of medical devices is required at least once a year. Calibration according to Permenkes No. 54 of 2015 is a calibration activity to determine the correctness of a tool. The purpose of this research is to make an Infusion Device Analyzer (IDA) with a TFT LCD displaying a graph of flowrate parameters. The method used is to analyze the flowrate value using an infrared photodiode sensor and can see the stability of the flowrate graph on a 7-inch TFT LCD from the use of 2 brands of syringes and an infusion set. The results obtained can be stored on the SD Card. The measurement results show that the error in the performance of the syringe and infusion pump read by the module on Channel 1 with the Terumo syringe is 0.15 (10 ml/h), 0.1 (50ml/h) and 0.03 (100ml/h). . On Channel 2 it is 0.02(10ml/hour), 0.03 (50ml/hour) and 0.04(100ml/hour). When using the B-Braun Channel 1 syringe, 0.25 (10ml/h), 009(50ml/h) and 0.08(100ml/h) are used. And on Channel 2 it is 0.62 (10ml/h), 0.15 (50ml/h), and 7.3 (100ml/h). When using the Terumo Channel 1 brand infusion set at 0.05 (10ml/h), 0.3(50ml/h), and 0.04(100ml/h). On Channel 2 it is 0.14(10ml/hour), 0.02 (50ml/hour) and 0.18 (100 ml/hour). When using the B-Braun Channel 1 Infusion Set, it is 0.07(10ml/h), 0.02(50 ml/h), and 0.03 (100ml/h). Then on Channel 2 0.07 (10ml/hour), 0.02(50 ml/hour), and 0.1(100ml/hour). The conclusion of this study is that the use of 2 different infusion sets greatly affects the readings, other than that other factors can also affect the readings including the position of the hose and the placement of sensors on each channel. From the manufacture of this tool, it is expected that users can be more efficient in using a 2-channel Infusion Device analyzer which can be run at the same time.
Performance Analysis of Twelve Lead ECG Based on Delivery Distance Using Bluetooth Communication Azel Pralingga Mukti; Lusiana Lusiana; Dyah Titisari; Satheeshkumar Palanisamy
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 5 No 1 (2023): January
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v5i1.275

Abstract

Based on data from Basic Health Research (Riskesdas) in 2018, the incidence of heart and blood vessel disease is increasing from year to year. At least 15 out of 1000 people or about 2,784,064 individuals in Indonesia suffer from heart disease. Therefore, cardiovascular health care can make a better diagnosis through continuous monitoring. The purpose of this study was to develop a 12-lead circuit, a lead selector (Wilson Central Terminal), an instrumentation booster, an analog filter (Notch Filter 50Hz), Arduino UNO, a Bluetooth module, and Delphi7 application to display electrocardiograph signals. The results show that the Bluetooth module cannot send a signal at a distance of 20 meters if there is no obstacle, cannot send a signal at a distance of 10 meters if there is an obstacle in the form of a wall, and cannot send a signal at a distance of 16 meters if there is an obstacle in the form of wood (doors).
Eight Channel Temperature Monitoring using Thermocouple Sensors (type K) Based on Internet of Thing using ThinkSpeak Platform Candra Prastyadi; Bedjo utomo; Her Gumiwang Ariswati; Dyah Titisari; Sumber Sumber; A. Senthil Kumar
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 5 No 1 (2023): January
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v5i1.276

Abstract

A laboratory incubator is a device used to incubate a breed. a very important condition in the procedure Incubator is the optimal temperature conditions for microorganisms to grow. The incubator is equipped with a temperature controller so that the temperature can be adjusted according to the breed to be raised. Incubators use an oven like dry heat. The purpose of this study was to test and analyze the accuracy of the thermocouple sensor with incubator media in a laboratory incubator calibrator. The main design method uses the 8 MAX 6675 module, the 8 K type Thermocouple module, Arduino Mega, and SD Card data storage. Temperature measurements were measured with a Type K thermocouple sensor. The thermocouple sensor has 8 channels which function to measure the temperature at each camber point of the incubator. The temperature will be stored on the SD card for data analysis and the data can be processed in graphical form. Benchmarking is done using a temperature data logger. This is done so that the design results are below the standard comparison tool. The measurement results on the module compared to the comparison tool obtained the largest error value, namely 3.98%, namely on channel T6 at 35°C with ordinary incubator media and the smallest error on ordinary incubator media at point T6 at 37°C, which is 0.06 % and at 35 C the temperature of the incubator fan has the largest error of 2.98% and the smallest error of 0.86%. the module can perform well by testing the comparison tool at every point
Analysis of Stability and Accuracy of Gas Flow in High Flow Nasal Canule for COVID-19 Patients Muhammad Ridha Mak'ruf; Novella Lasdrei Anna Leediman; Andjar Pudji; Erwin L. Rimban
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 5 No 1 (2023): January
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v5i1.277

Abstract

In December 2019, the world was introduced to a new coronavirus, severe acute respiratory syndrome (COVID-19).The primary strategy for COVID-19 patients is supportive care, using high-flow nasal oxygen therapy (HFNC) reported to be effective in improving oxygenation. Stability is the ability of a medical device to maintain its performance [1]. Medical equipment must have the stability necessary to maintain critical performance conditions over a period of time. Accuracy is the closeness of agreement between the value of a measuring quantity, and the value of the actual quantity of the measuring quantity[2].The purpose of this study is to ensure that the readings of the HFNC device are accurate and stable so that it is safe and comfortable when used on patients. The development of the equipment that will be used by the author adds graphs to the TFT LCD to help monitor stable data in real time so that officers can monitor the flow and fraction of oxygen in the device to be stable. This study uses Arduino Nano while the sensor used is the GFS131 sensor, then the results are displayed on the Nextion TFT LCD. The test is carried out with comparing the setting value of the HFNC tool that appears on the TFT LCD with a gas flow analyzer with a measurement range of 20 LPM to 60 LPM 5 times at each point. Based on measurements on the gas flow analyzer, the HFNC module has an average error (error (%)) of6.40%. Average uncertainty (Ua) 0.05. Conclusion from these results that the calibrator module has a relative error (error value) that is still within the allowable tolerance limit, which is ±10%, the tool is precise because of the small uncertainty and good stability of the stability test carried out within a certain time.

Page 9 of 27 | Total Record : 270