cover
Contact Name
Triwiyanto
Contact Email
triwiyanto123@gmail.com
Phone
+628155126883
Journal Mail Official
editorial.ijeeemi@gmail.com
Editorial Address
Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya Jl. Pucang Jajar Timur No. 10, Surabaya
Location
Kota surabaya,
Jawa timur
INDONESIA
Indonesian Journal of electronics, electromedical engineering, and medical informatics
ISSN : -     EISSN : 26568624     DOI : https://doi.org/10.35882/ijeeemi
The Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics (IJEEEMI) is a peer-reviewed open-access journal. The journal invites scientists and engineers throughout the world to exchange and disseminate theoretical and practice-oriented topics which covers three (3) majors areas of research that includes 1) Electronics, 2) Biomedical Engineering, and 3) Medical Informatics (emphasize on intelegent system design). Submitted papers must be written in English for an initial review stage by editors and further review process by a minimum of two reviewers.
Articles 5 Documents
Search results for , issue "Vol 4 No 3 (2022): August" : 5 Documents clear
Development of Low-Cost Electrospinning to Fabricate Structured Nanofiber for Biomedical Designs with Manageable Flowrate and Voltage MUHAMMAD YUSRO; Kadarisman Kadarisman
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 3 (2022): August
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i3.234

Abstract

Electrospinning is the most popular method that uses in nanofiber production. However, the budget to purchase this tool in the market is expensive. This article reports how to build electrospinning at a lesser cost. There are three main components in electrospinning that will be broken down regarding how to build it. First, the Syringe pump creates machinery to push the liquid in the syringe creating a Taylor cone affected by high voltage. Second, a high voltage power supply occurs electrostatic force. Third, the collector gathers nanofiber products. This machine has cost Rp 3.168.822 or $220,26. This number is less than the shop production or the previous report to create low-cost electrospinning. To make sure that this method successfully creates nanofiber. Scanning Electron Microscopy (SEM) is conducted and the result shows that the fiber size is 719±0,06 nanometers. Moreover, the flow rate and the voltage also have been assessed resulting that they are in a controllable manner by showing a linear profile. In this article, the budget is shared to declare that this electrospinning is more affordable. Hopefully, this report could help researchers who intend to build electrospinning at the lab scale to develop their research in nanofiber products with less cost
ZETA Converter as a Voltage Stabilizer with Fuzzy Logic Controller Method in The Pico Hydro Power Plant Anggara Trisna Nugraha; Rachma Prilian Eviningsih
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 3 (2022): August
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i3.237

Abstract

The development of the use of renewable energy that is environmentally friendly has been widely carried out, one of which is the use of energy as a turbine drive in the Pico Hydro Power Plant. The main problem in using energy, especially water energy, is the flow of water which can affect the flow of water used to rotate the turbine, so that the voltage on the DC link cannot be kept constant. Therefore, in this paper, we will design and simulate the charging process for a lead acid battery with a DC-DC converter and a Pico Hydro Power Plant as the main source. The type of generator used in the Pico Hydro Power Plant is a DC generator. The output voltage of the DC generator is still fluctuating, so to keep the output voltage constant, a DC-DC converter is needed, namely the ZETA Converter, so that its efficiency will be better when compared to using other types of converters. The ZETA converter with a DC generator as a source will be used for the battery charging process using the Fuzzy Logic Controller so that the output voltage of the ZETA converter can be kept stable or constant. The results obtained in the close loop simulation test are that the output voltage is constant at 14.4 V and the output current is 6.64 A so that it can be used for the battery charging process that will be used for household lighting.
Utilization of High-Power Leds as Non-Invasive KV Meter Detectors in Collimation of Lighting Moch BAgus Fatihul Ihsan; Moch Prastawa Assalim Tetra Putra; Lamidi Lamidi; I Dewa Gde Hariwisana; Tribowo Indrato; Singgih Yudha Setiawan; Mansour Asghari
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 3 (2022): August
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i3.239

Abstract

X-ray radiation is used to diagnose the human body. Two parameters are often used as settings when using this machine. The first is the KV value, and the second is the mA value. If an error occurs in the kV setting, it will cause inappropriate image quality, so that it will provide inaccurate information in patient examination. Likewise with the presence of excessive doses to the patient's body. To ensure that the KV value that comes out is in accordance with the settings on the machine consul, invasive and non-invasive measurements can be carried out. Non-invasive is becoming an easy standard to do. Several types of equipment on the market and research results have been widely used for this non-invasive activity. The problem is that currently the existing tools still use detectors at an expensive price. The purpose of this study was to design a low-cost non-invasive x-ray KVmeter detector using an LED detector and test the ability of the detector at each point of collimation.. The method used in this study is to stump the detectors placed at 4 ends of the collimation 20 cm apart. The data is taken by doing x-ray exposure at a distance of 60 cm. The module measurements were carried out under 80 mA exposure conditions for 1 second and a collimation area of ​​20 x 20 cm. X-ray exposure settings were performed at 40kV, 50kV, 60kV, and 70kV settings. The module measurement results are compared with the x-ray machine setting values. From the comparison results, the smallest error rate on Sensor 2 is 0.83% while the highest error is on S5 of 26.43%. The results can be concluded that the LED phosphor can capture x-rays, but the detector is weak due to interference from ambient light. The results obtained from the detector itself are still less stable and linear. In future research, stability and linearity will be built using a mechanical design that reduces ambient light interference.
Effect of Muscle Fatigue on Heart Signal on Physical Activity with Electromyogram and Electrocardiogram (EMG Parameter ) Monitoring Signals Muhammad Fauzi; Endro Yulianto; Bambang Guruh Irianto; Sari Luthfiyah; Triwiyanto Triwiyanto; Vishwajeet Shankhwar; Bahaa Eddine ELBAGHAZAOUI
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 3 (2022): August
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i3.240

Abstract

Physical activity is an activity of body movement by utilizing skeletal muscles that is carried out daily. One form of physical activity is an exercise that aims to improve health and fitness. Parameters related to health and fitness are heart and muscle activity. Strong and prolonged muscle contractions result in muscle fatigue. To measure muscle fatigue, the authors used electromyographic (EMG) signals through monitoring changes in muscle electrical activity. This study aims to make a tool to detect the effect of muscle fatigue on cardiac signals on physical activity. This research method uses Fast Fourier Transform (FFT) with one group pre-test-post-test research design. The independent variable is the EMG signal when doing plank activities, while the dependent variable is the result of monitoring the EMG signal. To get more detailed measurement results, the authors use MPF, MDF and MNF and perform a T-test. The test results showed a significant value (pValue <0.05) in the pre-test and post-test. The Pearson correlation test got a value of 0.628 which indicates there is a strong relationship between exercise frequency and plank duration. When the respondent experiences muscle fatigue, the heart signal is affected by noise movement artifacts that appear when doing the plank. It is concluded that the tools in this study can be used properly. To overcome noise in the EMG signal, it is recommended to use dry electrodes and high-quality components. To improve the ability to transmit data, it is recommended to use a Raspberry microcontroller.
A Analysis of The Capture Result of Flat Panel Detector Design with Arduino-Based BPW34 Photodiode Sensor against mA and kV Settings Muhammad Rois Amin; Muhammad Fajar Wahyudi; Muhammad Ridha Makruf; Tri Bowo Indrato; Andjar Pudji; Satheeshkumar Palanisamy
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 3 (2022): August
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i3.242

Abstract

The exposure factor is the factor that determines the intensity and quality of X-rays received by the patient. Exposure factors that can be controlled are: tube voltage (kV), tube current (mA), irradiation time (second), and distance of the X-ray tube to the film (FFD). The purpose of this study was to capture X-rays at a relatively affordable manufacturing price and to obtain a difference in value from the detector's catch between dark and light by utilizing the response of the BPW34 photodiode sensor. The contribution of this study is that the system can display grayscale and numerical on an 8x8 pixel matrix using the Matrix Laboratory (MATLAB) Application. This study was able to convert images taken from analog data after taking measurements on X-rays. The measurements are carried out by 2 methods, there are range used was 32-63mA, with a tube voltage of 50 kV at an irradiation duration of 1 second and 50 - 70 kV, with a tube current of 40 mA and an irradiation duration of 1 second. From the measurement results, it shows that the Flat Panel Detector Design Tool after being compared with the Philips brand DR is able to respond to differences in dose and object thickness. The results of this study indicate that this tool can be used to capture X-rays so that the degree of blackness of the film can be known.

Page 1 of 1 | Total Record : 5