cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
Indonesian Journal of Electrical Engineering and Computer Science
ISSN : 25024752     EISSN : 25024760     DOI : -
Core Subject :
Arjuna Subject : -
Articles 9,138 Documents
Design and implementation of an automated irrigation control for home plantations Pérez-Baca, Molly Scarlet; Sambrano-Luna, Karina Lizeth; Sánchez-Ramírez, Jhony Miguel; Cabana-Cáceres, Maritza; Castro-Vargas, Cristian
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i3.pp1437-1446

Abstract

In today's society, keeping our gardens attractive is complex, especially if you need more time to care for them. This can cause the plant to wilt if it is not watered occasionally to keep the soil moist. In summer, this problem tends to get worse because the temperature tends to rise and reach high degrees. The objective is to design an automatic and manual irrigation system with a humidity detector through hardware programming and free software to solve this. The necessary components will be identified and selected, humidity thresholds will be established, and the adoption of technologies such as internet of things (IoT), Arduino, and humidity sensors will be promoted to solve the problem in automated irrigation systems. The technical specifications of the components are described, and the circuit design is presented. A programming algorithm will be developed to control the frequency and duration of irrigation, as well as the state of the water pump. Implementing the automated system will allow precise water supply control, contributing to the healthy growth of plants and crops in green areas.
Optimizing network lifetime in wireless sensor networks: a hierarchical fuzzy logic approach with LEACH integration Dadhirao, Chandrika; Reddy Sadi, Ram Prasad; Prabhakar Rao, B V A N S S; Terlapu, Panduranga Vital
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 2: November 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i2.pp1140-1148

Abstract

Wireless sensor networks (WSNs) are of significant importance in many applications; nevertheless, their operational efficiency and longevity might be impeded by energy limitations. The low energy adaptive clustering hierarchy (LEACH) protocol has been specifically developed with the objective of achieving energy consumption equilibrium and regularly rotating cluster heads (CHs). This study presents a novel technique, namely the hierarchical fuzzy logic controller (HFLC), which is integrated with the LEACH protocol to enhance the process of CH selection and effectively prolong the network's operational lifespan. The HFLC system employs fuzzy logic as a means to address the challenges posed by uncertainty and imprecision. It assesses many aspects, including residual energy, node proximity, and network density, in order to make informed decisions. The combination of HFLC with LEACH demonstrates superior performance compared to the conventional LEACH protocol in terms of energy efficiency, stability, and network durability. This study emphasizes the potential of intelligent and adaptive mechanisms in improving the performance of WSNs by improving the survivability of nodes by reducing the energy consumption of the nodes during the communication of network process. It also paves the way for future research that integrates soft computing approaches into network protocols.
Interlined dynamic voltage restorer using time-domain methodologies with Z-source inverter/voltage source inverter Anuradha, Chandrasekar; Raman, Rathinam Anantha; Arunsankar, Ganesan; Joel, Maharajan Robinson; Sathyanathan, Pitchamuthu; Kantari, Hanumaji; Murugan, Subbiah
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 1: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i1.pp15-25

Abstract

Electronic devices and loads are very sensitive to the voltage disturbances like voltage sag and voltage swell. Significant financial losses and safety issues may emerge from voltage sags and interruptions, which can be caused by variables such as system breakdowns and load changes. In order to protect against voltage fluctuations and keep vital loads running, dynamic voltage restorers (DVRs) have become more popular. To mitigate the voltage disturbances, an interlined DVR (IDVR) using a Z-source inverter (ZSI) is developed to protect the sensitive devices and loads. Back-to-back DVR connects the distributed feeders with a common direct current (DC) link. The IDVR compensates for the sag voltage and supplies the energy to control the power flow. In addition, proposed a modified synchronous reference frame (MSRF)/direct quadrature theory, hysteresis controller, and proportional integral (PI) controller, which provides the required amount of control signals for a ZSI and voltage source inverter (VSI). MATLAB/Simulink validated the simulation results. The experimental findings show that the suggested system can be implemented successfully and is effective at reducing voltage dips and interruptions, allowing crucial loads to keep operating consistently and without interruption in residential as well as commercial environments.
Enhancing stress detection in wearable IoT devices using federated learning and LSTM based hybrid model Mouhni, Naoual; Amalou, Ibtissam; Chakri, Sana; Tourad, Mohamedou Cheikh; Chakraoui, Mohamed; Abdali, Abdelmounaim
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 2: November 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i2.pp1301-1308

Abstract

In the domain of smart health devices, the accurate detection of physical indicators levels plays a crucial role in enhancing safety and well-being. This paper introduces a cross device federated learning framework using hybrid deep learning model. Specifically, the paper presents a comprehensive comparison of different combination of long short-term memory (LSTM), gated recurrent unit (GRU), convolutional neural network (CNN), random forest (RF), and extreme gradient boosting (XGBoost), in order to forecast stress levels by utilizing time series information derived from wearable smart gadgets. The LSTM-RF model demonstrated the highest level of accuracy, achieving 93.53% for user 1, 99.40% for user 2, and 97.88% for user 3. Similarly, the LSTM-XGBoost model yielded favorable outcomes, with accuracy rates of 85.88%, 98.55%, and 92.02% for users 1, 2, and 3, respectively. These findings highlight the efficacy of federated learning and the utilization of hybrid models in stress detection. Unlike traditional centralized learning paradigms, the presented federated approach ensures privacy preservation and reduces data transmission requirements by processing data locally on Edge devices.
Digital transformation technologies for conveyor belts predictive maintenance: a review Santoshi Anusha, Pediredla Veni; Peravali, Swapna; Koti Reddy, Dodda Venkata Rama
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 1: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i1.pp639-646

Abstract

The availability of condition-monitoring data has increased due to internet of things (IoT) technologies, providing information on various parameters like vibration, temperature, current, and voltage. Cloud computing and big data facilitate the prevention of failures and estimation of remaining useful life through advanced mathematical models and artificial intelligence (AI) techniques. These enable prompt and suitable maintenance actions. This article conducts a systematic review of digital transformation technologies, including cloud computing, edge computing, AI, machine learning (ML), and TinyML, in predictive maintenance for conveyor belt systems. This article reviews how these digital transformation technologies improve predictive maintenance strategies for conveyor belts. The systematic review summarizes the results and challenges of various methodologies used in conveyor belt systems and suggests areas for further research. This paper aimed to serve as a useful resource for researchers, practitioners, and industry professionals seeking insights into current predictive maintenance technologies for conveyor belt systems. The takeaways of the review are expected to ignite discussion on efficient and proactive maintenance strategies and promote the development of innovative solutions for ensuring the reliability and longevity of conveyor belt systems in the digital era.
Automated blood cancer detection models based on EfficientNet-B3 architecture and transfer learning Alshdaifat, Nawaf; Owida, Hamza Abu; Mustafa, Zaid; Aburomman, Ahmad; Abuowaida, Suhaila; Ibrahim, Abdullah; Alsharafat, Wafa
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 3: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i3.pp1731-1738

Abstract

In blood smear images, there are difficulties in diagnosing blood cancer diseases like leukemia and lymphoma because of their various forms that appear in the human body. In this paper, a method for automatic detection of blood cancer is suggested that uses the EfficientNet-B3 architecture along with transfer learning techniques to improve accuracy and efficiency. We first fine-tuned the EfficientNet-B3 model, which was pre-trained on a large dataset consisting of annotated blood smear images, to capture pertinent features linked with blood malignant cells. To expedite the training process and adapt the model to our task, we use transfer learning. The proposed approach’s results from our experiments show that it outperforms traditional deep learning models and state-of-the-art methods in blood cancer detection. Additionally, with high precision and recall rates, this model also detects different types of blood cancers with robustness in its performance since its accuracy is over 99%. This means that when used together with the EfficientNet-B3 architecture, transfer learning can help the developed methods generalize among different types of blood cancers and conditions.
Obstacle detection to minimize delay and Q-learning to improve routing efficiency in VANET Dev, Kishore Chandra; Barani, Selvaraj
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i3.pp1507-1516

Abstract

Nowadays, several service providers in urban areas significantly consider vehicular ad hoc networks (VANET). VANETs can enhance road safety, prevent accidents, and grant passengers entertainment. Though in VANET, efficient routing has remained an open problem. VANET is dynamic; the frequent update in the situation originates through several aspects, such as traffic conditions and updates in the road topology, which demand a suitably adaptive routing. The existence of blocking obstacles degrades routing approaches and increases the failure of paths. These issues build an excessive amount of resource utilization and increase network delay. To solve these issues, obstacle detection to minimize delay and Q-learning to improve routing efficiency (ODQI) in VANET is proposed. This mechanism uses the spanning tree algorithm detects the obstacle. Clustering can be used to manage the topology in VANETs. The dingo algorithm selects the best cluster head (CH) based on vehicle bandwidth, speed, and link lifespan. Furthermore, the sender forwards the traffic information from the sender to the receiver by applying a Q-learning algorithm. This learning algorithm computes the award function to choose the forwarder, improving the routing efficiency. Simulation results demonstrate that the ODQI mechanism increases the CH lifetime and minimizes the network delay.
Bee-inspired knowledge transfer: synthesizing data for enhanced deep learning explainability Chungnoy, Kritanat; Tanantong, Tanatorn; Songmuang, Pokpong
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 2: November 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i2.pp1052-1069

Abstract

This paper presents the generation method for an explainable model based on the given information of a black box model using a concept of knowledge transfer to synthesize a dataset. The proposed method applies with GAN and Bee algorithm (BA) for data synthesis technique to synthesize a dataset by considering loss value in a knowledge transferring process to inherit the significance of features. The synthesized dataset is used to train for a proxy model as an explainable model. The result of the experiment indicates that knowledge transfer from Bee algo better than generative adversarial network (GAN) in terms of the coefficient of determination R2. In addition, explainable models from the synthesized data of the Bee-based method obtains F1 score superior to those from the GAN-based method in all datasets and settings. The dataset synthesized from the Bee-based method produces the explainable prediction model that has similar top-10 features according to similarity score of 0.6718 using shapley additive explanations (SHAP) feature importance which is higher than those from GAN-based method for 0.4218 in average. Additionally, experimental result to evaluate accuracy shows that F1 score from explainable models from the Bee-based method are closed to F1 score from a model generated from the original dataset.
Energy baseline model enhanced based on artificial neural network in industrial buildings Ouaomar, Younes; Benkachcha, Said; Kaddiri, Mourad
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 3: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i3.pp1493-1502

Abstract

In this article, a new energy-efficient reference model has been established for a plastic injection molding plant. However, the proposed model handled difficulties due to the lack of robust and complete data, such as production mix and cooling degree-days. In addition, the proposed model applies three distinct enhanced modeling methodologies, including regression modeling, artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). Furthermore, these performance parameters were established to assess the accuracy of each model in this work. Moreover, the numerical results show that among the methodologies used in this work, the ANN demonstrated effective performance despite uncertainties in the measured input variables. The ANN numerical results in this paper highlight the ability to accurately assess baseline consumption in the industrial sector, providing a practical tool for decision-makers to improve energy efficiency.
Development of a machine learning algorithm for fake news detection Sia Abdullah, Nur Atiqah; Aniza Rusli, Nur Ida; Yuslee, Nurshaheeda Shazlin
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i3.pp1732-1743

Abstract

With the extensive technological advancements and expansion, the persistent issues regarding the creation and rapid dissemination of fake news have become a prevalent and recurrent concern. The manipulation of news content has critical repercussions, such as causing public mistrust, fear, harm, and misinformation. Addressing that, this study developed a supervised machine learning algorithm that can accurately classify social media data as fake news. The methodology of the proposed fake news detection model involved five main components: data acquisition from Twitter, data preprocessing, data transformation, model development using Naïve Bayes, decision tree, and support vector machine (SVM) and model evaluation using accuracy, precision, recall and F1-score. The results revealed that decision tree recorded the highest accuracy for both textual data (100%) and metadata (94.54%) and consistently outperformed both Naïve Bayes and SVM in terms of precision, recall, and F1-score metrics, with a score of 100% for the classification of textual data-based datasets. Regarding the metadata-based classification, decision tree also demonstrated excellent performance, with the highest F1-score of 94% for fake news data. Meanwhile, SVM exhibited the highest precision and recall performance for the metadata-based classification. Overall, the application of the decision tree classifier was deemed the most effective in Twitter fake news detection.

Filter by Year

2012 2026


Filter By Issues
All Issue Vol 41, No 1: January 2026 Vol 40, No 3: December 2025 Vol 40, No 2: November 2025 Vol 40, No 1: October 2025 Vol 39, No 3: September 2025 Vol 39, No 2: August 2025 Vol 39, No 1: July 2025 Vol 38, No 3: June 2025 Vol 38, No 2: May 2025 Vol 38, No 1: April 2025 Vol 37, No 3: March 2025 Vol 37, No 2: February 2025 Vol 37, No 1: January 2025 Vol 36, No 3: December 2024 Vol 36, No 2: November 2024 Vol 36, No 1: October 2024 Vol 35, No 3: September 2024 Vol 35, No 2: August 2024 Vol 35, No 1: July 2024 Vol 34, No 3: June 2024 Vol 34, No 2: May 2024 Vol 34, No 1: April 2024 Vol 33, No 3: March 2024 Vol 33, No 2: February 2024 Vol 33, No 1: January 2024 Vol 32, No 3: December 2023 Vol 32, No 1: October 2023 Vol 31, No 3: September 2023 Vol 31, No 2: August 2023 Vol 31, No 1: July 2023 Vol 30, No 3: June 2023 Vol 30, No 2: May 2023 Vol 30, No 1: April 2023 Vol 29, No 3: March 2023 Vol 29, No 2: February 2023 Vol 29, No 1: January 2023 Vol 28, No 3: December 2022 Vol 28, No 2: November 2022 Vol 28, No 1: October 2022 Vol 27, No 3: September 2022 Vol 27, No 2: August 2022 Vol 27, No 1: July 2022 Vol 26, No 3: June 2022 Vol 26, No 2: May 2022 Vol 26, No 1: April 2022 Vol 25, No 3: March 2022 Vol 25, No 2: February 2022 Vol 25, No 1: January 2022 Vol 24, No 3: December 2021 Vol 24, No 2: November 2021 Vol 24, No 1: October 2021 Vol 23, No 3: September 2021 Vol 23, No 2: August 2021 Vol 23, No 1: July 2021 Vol 22, No 3: June 2021 Vol 22, No 2: May 2021 Vol 22, No 1: April 2021 Vol 21, No 3: March 2021 Vol 21, No 2: February 2021 Vol 21, No 1: January 2021 Vol 20, No 3: December 2020 Vol 20, No 2: November 2020 Vol 20, No 1: October 2020 Vol 19, No 3: September 2020 Vol 19, No 2: August 2020 Vol 19, No 1: July 2020 Vol 18, No 3: June 2020 Vol 18, No 2: May 2020 Vol 18, No 1: April 2020 Vol 17, No 3: March 2020 Vol 17, No 2: February 2020 Vol 17, No 1: January 2020 Vol 16, No 3: December 2019 Vol 16, No 2: November 2019 Vol 16, No 1: October 2019 Vol 15, No 3: September 2019 Vol 15, No 2: August 2019 Vol 15, No 1: July 2019 Vol 14, No 3: June 2019 Vol 14, No 2: May 2019 Vol 14, No 1: April 2019 Vol 13, No 3: March 2019 Vol 13, No 2: February 2019 Vol 13, No 1: January 2019 Vol 12, No 3: December 2018 Vol 12, No 2: November 2018 Vol 12, No 1: October 2018 Vol 11, No 3: September 2018 Vol 11, No 2: August 2018 Vol 11, No 1: July 2018 Vol 10, No 3: June 2018 Vol 10, No 2: May 2018 Vol 10, No 1: April 2018 Vol 9, No 3: March 2018 Vol 9, No 2: February 2018 Vol 9, No 1: January 2018 Vol 8, No 3: December 2017 Vol 8, No 2: November 2017 Vol 8, No 1: October 2017 Vol 7, No 3: September 2017 Vol 7, No 2: August 2017 Vol 7, No 1: July 2017 Vol 6, No 3: June 2017 Vol 6, No 2: May 2017 Vol 6, No 1: April 2017 Vol 5, No 3: March 2017 Vol 5, No 2: February 2017 Vol 5, No 1: January 2017 Vol 4, No 3: December 2016 Vol 4, No 2: November 2016 Vol 4, No 1: October 2016 Vol 3, No 3: September 2016 Vol 3, No 2: August 2016 Vol 3, No 1: July 2016 Vol 2, No 3: June 2016 Vol 2, No 2: May 2016 Vol 2, No 1: April 2016 Vol 1, No 3: March 2016 Vol 1, No 2: February 2016 Vol 1, No 1: January 2016 Vol 16, No 3: December 2015 Vol 16, No 2: November 2015 Vol 16, No 1: October 2015 Vol 15, No 3: September 2015 Vol 15, No 2: August 2015 Vol 15, No 1: July 2015 Vol 14, No 3: June 2015 Vol 14, No 2: May 2015 Vol 14, No 1: April 2015 Vol 13, No 3: March 2015 Vol 13, No 2: February 2015 Vol 13, No 1: January 2015 Vol 12, No 12: December 2014 Vol 12, No 11: November 2014 Vol 12, No 10: October 2014 Vol 12, No 9: September 2014 Vol 12, No 8: August 2014 Vol 12, No 7: July 2014 Vol 12, No 6: June 2014 Vol 12, No 5: May 2014 Vol 12, No 4: April 2014 Vol 12, No 3: March 2014 Vol 12, No 2: February 2014 Vol 12, No 1: January 2014 Vol 11, No 12: December 2013 Vol 11, No 11: November 2013 Vol 11, No 10: October 2013 Vol 11, No 9: September 2013 Vol 11, No 8: August 2013 Vol 11, No 7: July 2013 Vol 11, No 6: June 2013 Vol 11, No 5: May 2013 Vol 11, No 4: April 2013 Vol 11, No 3: March 2013 Vol 11, No 2: February 2013 Vol 11, No 1: January 2013 Vol 10, No 8: December 2012 Vol 10, No 7: November 2012 Vol 10, No 6: October 2012 Vol 10, No 5: September 2012 Vol 10, No 4: August 2012 Vol 10, No 3: July 2012 More Issue