cover
Contact Name
Goesderi Lidar
Contact Email
lppm@stmikindragiri.ac.id
Phone
+6285835388272
Journal Mail Official
lppm@stmikindragiri.ac.id
Editorial Address
Jl. Trimas No 88 Tembilahan Kab Indragiri Hilir Riau
Location
Unknown,
Unknown
INDONESIA
IndraTech
Published by STMIK Indragiri
ISSN : 27225607     EISSN : 27225348     DOI : Http://doi.org/10.56005/jit
Bidang keilmuan : Sistem Informasi, Jaringan Komputer, Sistem Terdistribusi, Telekomunikasi, Informatika, Sistem pakar dan Kecerdasan Buatan. Manajemen Pendidikan dan Sistem Ekonomi Islam
Articles 92 Documents
Analisis Kuantitatif Sistem Komunikasi Pengiriman Data Pengamatan Cuaca Otomatis di Provinsi Lampung Wulandari, Heptyana Sri; Sriyanto, Sriyanto; Aziz, Abdul
IndraTech Vol 5, No 2 (2024): Oktober 2024
Publisher : STMIK Indragiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56005/jit.v5i2.167

Abstract

Jaringan Komunikasi saat ini telah banyak perkembangan guna menunjang kecepatan informasi, dalam hal ini BMKG menggunakan jaringan data AWS dan AWL  memiliki sistem pengiriman data yang menggunakan Modem GSM 4G, Internet Servis Provider ( ISP ) dan Satelit Bakti guna pengiriman data dari beberapa jaringan Stasiun Cuaca Otomatis ( AWS )  dan stasiun dan otomatisasi tinggi muka air ( AWL ) yang tersebar di seluruh wilayah Indonesia, berdasarkan ketiga jaringan komunikasi yang di gunakan oleh BMKG dalam mengirimkan data realtime, penulis menggunkan metode Analisis data kuantitafif. Hasil analisis kuantitatif menunjukan bahwa penggunaan modem GSM 4G sangat baik apabila digunakan di kota / daerah yang mempunyai coverage sinyal yang baik.Kata Kunci: Jaringan Komunikasi, Badan Meteorologi Klimatologi dan Geofisika (BMKG), Analisis KuantitatifABSTRACTCommunication networks currently have many developments to support the speed of information, in this case BMKG uses the AWS data network and AWL has a data delivery system that uses a 4G GSM Modem, Internet Service Provider (ISP) and Bakti Satellite to send data from several Automatic Weather Station networks (AWS) and stations and automatic water level (AWL) spread throughout Indonesia, based on the three communication networks used by BMKG in sending real-time data, the author uses the quantitative data analysis method. The results of the quantitative analysis show that the use of the GSM 4G modem is very good when used in cities/regions that have good signal coverage.Keyword: Communication Network, Meteorology, Climatology and Geophysics Agency (BMKG), Quantitative Analysis
Komparasi Penerapan Adaboost Pada Algoritma Naive Bayes, K-Nearest Neighbor, dan Decision Tree untuk Stroke Otak Dirhan, Dirhan; Sriyanto, Sriyanto
IndraTech Vol 6, No 1 (2025): Mei 2025
Publisher : STMIK Indragiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56005/jit.v6i1.169

Abstract

Stroke merupakan salah satu penyakit serius yang menyebabkan kematian dan kecacatan, sehingga prediksi dini terhadap risiko stroke sangat penting dalam upaya penanganan dan pencegahan. Penelitian ini mengkaji komparasi penerapan metode AdaBoost pada tiga algoritma klasifikasi, yaitu Naive Bayes, K-Nearest Neighbor (KNN), dan Decision Tree, untuk memprediksi stroke otak. Data stroke diperoleh dari dataset yang telah melalui serangkaian proses praproses, meliputi imputasi missing value, encoding variabel kategorik, dan normalisasi fitur numerik, guna meningkatkan efektivitas dan efisiensi model. Proses pelatihan dan pengujian dilakukan dengan menggunakan K-Fold Cross Validation (K=5) di platform Google Colab, dan kinerja model diukur berdasarkan metrik akurasi, presisi, recall, dan F1-Score. Hasil evaluasi menunjukkan bahwa penerapan AdaBoost secara signifikan meningkatkan performa model, terutama pada algoritma Naive Bayes dan KNN, dengan peningkatan akurasi yang mencolok; misalnya, akurasi Naive Bayes meningkat dari 82,09% menjadi 94,48% dan KNN mencapai akurasi sebesar 94,62% setelah digabungkan dengan AdaBoost. Temuan ini mengindikasikan bahwa integrasi teknik ensemble seperti AdaBoost dapat memperkuat kemampuan algoritma klasifikasi dalam mendeteksi stroke otak, sehingga berpotensi mendukung deteksi dini dan pengambilan keputusan medis yang lebih cepat serta tepat.Kata kunci: Stroke Otak, AdaBoost, Naïve Bayes, K-Nearest Neighbor, Decision Tree ABSTRACT Stroke is a serious disease that causes death and disability, so early prediction of stroke risk is very important in handling and prevention efforts. This study compares the application of the AdaBoost method to three classification algorithms, namely Naive Bayes, K-Nearest Neighbor (KNN), and Decision Tree, to predict brain stroke. Stroke data is obtained from a dataset that has gone through a series of preprocessing processes, including imputation of missing values, encoding of categorical variables, and normalization of numerical features, to improve the model's effectiveness and efficiency. The training and testing processes were conducted using K-Fold Cross Validation (K=5) on the Google Colab platform, and model performance was measured based on accuracy, precision, recall, and F1-Score metrics. The evaluation results show that the application of AdaBoost significantly improves the model performance, especially in the Naive Bayes and KNN algorithms, with a notable increase in accuracy; for example, the accuracy of Naive Bayes increased from 82.09% to 94.48% and KNN achieved an accuracy of 94.62% after incorporating AdaBoost. These findings indicate that the integration of ensemble techniques such as AdaBoost can strengthen the ability of classification algorithms to detect brain stroke, potentially supporting early detection and faster and more informed medical decision-making.Keywords: Stroke Otak, AdaBoost, Naïve Bayes, K-Nearest Neighbor, Decision Tree 

Page 10 of 10 | Total Record : 92