cover
Contact Name
Esther Irawati Setiawan
Contact Email
esther@istts.ac.id
Phone
+62315027920
Journal Mail Official
insyst@istts.ac.id
Editorial Address
Kampus Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya) Ngagel Jaya Tengah 73-77, Surabaya, Indonesia
Location
Kota surabaya,
Jawa timur
INDONESIA
Insyst : Journal of Intelligent System and Computation
ISSN : 26219220     EISSN : 27221962     DOI : https://doi.org/10.52985/insyst
Core Subject : Science,
The Intelligent System and Computation Journal will be published for 2 editions in a year, every April and October. The Intelligent System and Computation Journal is an open access journal where full articles in this journal can be accessed openly. Review in this journal will be conducted with a blind review system. All articles in this journal will be indexed by Google Scholar. The topics contained in this journal consist of several fields (but not limited to): Algorithms and complexity Artificial Intelligence Big Data Analytics Biomedical Instrumentation Computational logic Computer Vision and Biometric Data and Web Mining Digital Signal Processing Image Processing Information Retrieval & Information Extraction Intelligence Embedded Systems Machine Learning Mathematics and models of computation Natural Language Processing Parallel & Distributed Computing Pattern Recognition Programming languages and semantics Speech Processing Virtual Reality & Augmented Reality
Articles 85 Documents
Stance Classification Post Kesehatan di Media Sosial Dengan FastText Embedding dan Deep Learning Ernest Lim; Esther Irawati Setiawan; Joan Santoso
Intelligent System and Computation Vol 1 No 2 (2019): INSYST:Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v1i2.86

Abstract

Misinformasi merupakan fenomena yang semakin sering terjadi di media sosial, tidak terkecuali Facebook, salah satu media sosial terbesar di Indonesia. Beberapa penelitian telah dilakukan mengenai teknik identifikasi dan klasifikasi stance di media sosial Indonesia. Akan tetapi, penggunaan Word2Vec sebagai word embedding dalam penelitian tersebut memiliki keterbatasan pada pengenalan kata baru. Hal ini menjadi dasar penggunaan fastText embedding dalam penelitian ini. Dengan menggunakan pendekatan deep learning, penelitian berfokus pada performa model dalam klasifikasi stance suatu judul post kesehatan di Facebook terhadap judul post lainnya. Stance berupa for (setuju), observing (netral), dan against (berlawanan). Dataset terdiri dari 3500 judul post yang terdiri dari 500 kalimat klaim dengan enam kalimat stance terhadap setiap klaim. Model dengan fastText pada penelitian ini mampu menghasilkan F1 macro score sebesar 64%.
Identifikasi Foto Wanita Berhijab dari Majalah Untuk Pembuatan Katalog Busana Muslim Otomatis Memanfaatkan Convolutional Neural Network M. Najamudin Ridha; Endang Setyati; Yosi Kristian
Intelligent System and Computation Vol 1 No 2 (2019): INSYST:Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v1i2.87

Abstract

Abstrak—Perkembangan Fashion Muslim di Indonesia terus meningkat, disisi lain terobosan baru pada Deep Learning dengan memadukan arsitektur seperti dropout regularizations dan Rectified Linear Unit (ReLU) sebagai fungsi aktivasi dan data augmentation, mampu mencapai terobosan pada large scale image classification. Penelitian ini menggunakan metode deteksi objek wajah dengan Haar Cascades Classification untuk mendapatkan sample dataset wajah dan preprocessing data testing untuk dilanjutkan pada metode machine learning untuk klasifikasi citra dengan Convolutional Neural Network. Dataset yang digunakan adalah kumpulan katalog busana online, dataset yang sudah di preprocessing dibagi menjadi dua kategori, yaitu Hijab untuk semua citra wanita berhijab, dan Non Hijab untuk citra yang bukan wanita berhijab. selanjutnya klasifikasi citra menggunakan data ujicoba majalah digital terbitan Hijabella, Joy Indonesia dan Scarf Indonesia. Semakin besar resolusi citra input untuk preprocessing pada majalah digital, maka akan semakin banyak objek citra yang terdeteksi, dengan meningkatkan jumlah dataset untuk training dan validasi, mampu menambah hasil akurasi yang didapatkan, terjadi peningkatan akurasi pada dataset 2.500 wajah perkategori ke 5.000 wajah perkategori dengan resolusi 720p meningkat dari rata-rata 81.30% menjadi 82.31%, peningkatan rata-rata 1.01% dan tertinggi 2.14%, sedangkan resolusi 1080p meningkat dari rata-rata 83.03% menjadi 83.68%, peningkatan rata-rata 0.65% dan tertinggi 1.73%, akurasi tertinggi adalah sebesar 84.72% menggunakan model dataset 5.000 secara acak perkategori.
Perencanaan Perjalanan Wisata Multi Kota dan Negara dengan Algoritma Cuttlefish Hendrawan Armanto; Reynold Kevin; Pickerling Pickerling
Intelligent System and Computation Vol 1 No 2 (2019): INSYST:Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v1i2.91

Abstract

Liburan merupakan saat yang paling tepat untuk melakukan perjalanan wisata bersama keluarga maupun kerabat ke suatu daerah untuk melihat berbagai objek wisata yang ada. Sebelum melakukan liburan, tentu saja setiap orang akan menyiapkan rencana perjalanan yang paling efektif dan efisien. Hal ini tentu saja merepotkan bagi para wisatawan karena tidaklah mudah untuk menyusun jadwal perjalanan wisata yang baik dan efisien. Meskipun sudah terdapat berbagai paket tur yang ditawarkan bagi para wistawan, banyak dari paket tur yang ditawarkan tidak sesuai dengan keinginan dari masing-masing orang karena faktor selera yang berbeda-beda. Oleh karena itu, dibuatlah sebuah penelitian yang digunakan untuk melakukan perencanaan perjalanan wisata multi kota dan negara berbasiskan aplikasi mobile. Untuk menyelesaikan, penelitian ini akan menggunakan Algoritma Cuttlefish dalam pembuatan jadwal wisata secara otomatis berdasarkan data input yang telah diisikan oleh pengguna sebelumnya. Pada penelitian ini, pengguna dapat melakukan pembuatan perencanaan perjalanan wisata baik secara manual ataupun otomatis. Selain fitur untuk pembuatan perencanaan perjalanan wisata, juga terdapat fitur untuk melakukan pencarian tiket penerbangan dan juga akomodasi tempat tinggal dengan bantuan TravelPayouts API. Pada pembuatan jadwal wisata pun juga sudah dilengkapi dengan pencarian tiket penerbangan dan akomodasi tempat tinggal sesuai dengan input yang diberikan oleh pengguna sebelumnya. Pengguna juga dapat melihat jadwal wisata yang telah terbentuk dalam bentuk Table View, Map View dan PDF. Dengan dibuatnya penelitian ini diharapkan para pengguna dapat membuat sebuah jadwal wisata berdasarkan selera masing-masing. Jadwal wisata yang dibentuk secara otomatis dengan menggunakan Algoritma Cuttlefish tersebut juga dibuat sedemikian rupa hingga tercipta sebuah jadwal wisata yang efisien. Selain itu, pada tahap akhir dari tahap uji coba disebarkan kuesioner kepada responden. Kuesioner bertujuan untuk mengetahui komentar pengguna mengenai hasil akhir dari penelitian yang telah dibuat demi pengembangan untuk kedepannya. Berdasarkan hasil kuesioner, sebanyak 88% responden menyatakan jadwal wisata yang terbentuk sudah cukup baik.
Identifikasi Biji-Bijian Berdasarkan Ekstraksi Fitur Warna, Bentuk dan Tekstur Menggunakan Random Forest Luthfi Alwi; Arya Tandy Hermawan; Yosi Kristian
Intelligent System and Computation Vol 1 No 2 (2019): INSYST:Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v1i2.93

Abstract

Abstrak - Proses identifikasi atau pengenalan biji-bijian merupakan aspek penting dalam dunia industri pengolahan pangan. Sebuah industri pangan berskala besar, proses pencampuran beberapa macam biji-bijian dalam pengolahan sebuah produk pangan sangat memperhatikan ketepatan dalam memilih bahan agar tidak terjadi kesalahan dalam proses produksi karena berpengaruh pada hasil akhir dari sebuah produksi. Agar tidak terjadi kesalahan yang fatal, diperlukan sebuah proses identifikasi dari bahan yang digunakan. Dengan sebuah sensor (intelligent camera) yang digunakan dari hasil sebuah proses identifikasi maka sebuah proses produksi produk pangan dapat berjalan dengan baik dan tidak terjadi kesalahan dalam pencampuran bahan. Proses pengidentifikasian terhadap beberapa varian biji-bijian dapat dilakukan dengan cara mengekstraksi fitur dari citra (image) dengan menganalisa melalui parameter warna, bentuk dan tekstur serta melakukan proses pengklasifikasian untuk mengukur tingkat keakuratan. Penelitian ini melakukan identifikasi terhadap varian biji-bijian (padi, jagung, kacang tanah dan kedelai) dengan melakukan ekstraksi fitur warna menggunakan RGB dan HSV, ekstraksi fitur bentuk menggunakan Morphological Threshold dan ekstraksi fitur tekstur menggunakan Grey Level Co-occurrence Matrix (GLCM) dan Local Binary Pattern (LBP). Untuk proses pengklasifikasian, peneliti menggunakan metode Random Forest Classifier (RF) untuk mendapatkan tingkat akurasi yang tinggi dengan batasan-batasan yang mempengaruhi keakuratan dalam proses pengklasifikasian untuk dikembangkan dalam proses selanjutnya. Peneliti menggunakan tools MATLAB R2015b untuk proses identifikasi mulai dari proses ekstraksi fitur sampai proses klasifikasnya. Berdasarkan hasil pengujian yang dilakukan didapatkan tingkat akurasi sebesar 99.8 %. Dapat disimpulkan bahwa pengambilan dataset berupa gambar atau image biji-bijian yang diteliti dapat dijadikan patokan untuk pengidentifikasian dan dapat dikembangkan dalam proses selanjutnya.
Pemanfaatan Beahvior Tree dan Fuzzy Waypoint Tactic pada Game Strategi "War of Zombies” Michael Patria Christie; Andreas -
Intelligent System and Computation Vol 2 No 1 (2020): INSYST:Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v2i1.146

Abstract

Dalam video game jaman sekarang, hampir semua permainan memakai kecerdasan buatan sebagai cara agar non-player karakter agar dapat berinteraksi dengan game. Karena itu pada penelitian ini bertujuan untuk mencoba menerapkan kecerdasan buatan behavior tree dan juga Fuzzy waypoint tactic. Project game “War of Zombies” ini merupakan permainan strategi dimana pemain yang berperan sebagai zombie mencoba melenyapkan manusia sebagai musuhnya. Pada permainan ini selain waypoint tactic dan behavior tree terdapat beberapa metode kecerdasan buatan yang diterapkan seperti A* pathfinding, djikstra dan juga fuzzy logic. Behavior tree merupakan metode panduan berisi langkah-langkah bagi karakter untuk menyelesaikan suatu tugas. Sedangkan fuzzy waypoint tactic merupakan cara bagi developer untuk memberitahu lokasi-lokasi strategis yang dapat membantu karakter dalam menyelesaikan tugas, seperti misalnya bersembunyi atau menembak. Pada game bertema strategi seperti ini, fuzzy logic sangat membantu untuk membuat suatu keputusan bagi karakter. Selain itu, fuzzy logic juga merupakan metode yang baik dalam waypoint tactic untuk menentukan lokasi strategis yang paling menguntungkan diantara pilihan-pilihan lokasi yang telah disediakan. Behavior tree juga merupakan metode yang baik dalam mengatur perilaku setiap karakter yang ada pada game strategi.
Market Basket Analysis untuk Swalayan KSU Sumber Makmur dengan Algoritma FP Growth Ramadhan Ramadhan; Esther Irawati Setiawan
Intelligent System and Computation Vol 2 No 1 (2020): INSYST:Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v2i1.149

Abstract

Salah satu teknik data mining yang populer digunakan adalah association data mining atau yang biasa disebut dengan istilah market basket analysis. Market basket didefinisikan sebagai suatu itemset yang dibeli secara bersamaan oleh pelanggan dalam suatu transaksi. Market basket analysis adalah suatu sarana untuk meningkatkan penjualan. Metode ini dimulai dengan mencari sejumlah frequent itemset dan dilanjutkan dengan pembentukan aturan-aturan asosiasi. Algoritma Apriori dan frequent pattern growth adalah dua algoritma yang sangat populer untuk menemukan sejumlah frequent itemset dari data-data transaksi yang tersimpan dalam basis data. Dalam penelitian ini algoritma frequent pattern growth (FP Growth) digunakan untuk menemukan sejumlah aturan asosiasi dari basis data transaksi penjualan di Swalayan KSU Sumber Makmur (Trenggalek). Dari hasil pengolahan data didapatkan pola pembelian paling kuat berupa jika membeli pasta gigi maka dimungkinkan juga akan membeli sabun dan jika membeli shampo juga akan membeli sabun dengan tingkat keyakinan (confidence) 63% dan 62%.
Analisis Trending Topik untuk Percakapan Media Sosial dengan Menggunakan Topic Modelling Berbasis Algoritme LDA Ahmad Syaifuddin; Reddy Alexandro Harianto; Joan Santoso
Intelligent System and Computation Vol 2 No 1 (2020): INSYST:Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v2i1.150

Abstract

Aplikasi WhatsApp merupakan salah satu aplikasi chatting yang sangat populer terutama di Indonesia. WhatsApp mempunyai data unik karena memiliki pola pesan dan topik yang beragam dan sangat cepat berubah, sehingga untuk mengidentifikasi suatu topik dari kumpulan pesan tersebut sangat sulit dan menghabiskan banyak waktu jika dilakukan secara manual. Salah satu cara untuk mendapatkan informasi tersirat dari media sosial tersebut yaitu dengan melakukan pemodelan topik. Penelitian ini dilakukan untuk menganalisis penerapan metode LDA (Latent Dirichlet Allocation) dalam mengidentifikasi topik apa saja yang sedang dibahas pada grup WhatsApp di Universitas Islam Majapahit serta melakukan eksperimen pemodelan topik dengan menambahkan atribut waktu dalam penyusunan dokumen. Penelitian ini menghasilkan model topic dan nilai evaluasi f-measure dari model topik berdasarkan uji coba yang dilakukan. Metode LDA dipilih untuk melakukan pemodelan topik dengan memanfaatkan library LDA pada python serta menerapkan standar text-preprocessing dan menambahkan slang words removal untuk menangani kata tidak baku dan singkatan pada chat logs. Pengujian model topik dilakukan dengan uji human in the loop menggunakan word instrusion task kepada pakar Bahasa Indonesia. Hasil evaluasi LDA didapatkan hasil percobaan terbaik dengan mengubah dokumen menjadi 10 menit dan menggabungkan dengan reply chat pada percakapan grup WhatsApp merupakan salah satu cara dalam meningkatkan hasil pemodelan topik menggunakan algoritma Latent Dirichlet Allocation (LDA), didapatkan nilai precision sebesar 0.9294, nilai recall sebesar 0.7900 dan nilai f-measure sebesar 0.8541.
Klasifikasi Tekstur Serat Kayu pada Citra Mikroskopik Veneer Memanfaatkan Deep Convolutional Neural Network Suriani Alamgunawan; Yosi Kristian
Intelligent System and Computation Vol 2 No 1 (2020): INSYST:Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v2i1.152

Abstract

Convolutional Neural Network sebagai salah satu metode Deep Learning yang paling sering digunakan dalam klasifikasi, khususnya pada citra. Terkenal dengan kedalaman dan kemampuan dalam menentukan parameter sendiri, yang memungkinkan CNN mampu mengeksplor citra tanpa batas. Tujuan penelitian ini adalah untuk meneliti klasifikasi tekstur serat kayu pada citra mikroskopik veneer dengan CNN. Model CNN akan dibangun menggunakan MBConv dan arsitektur lapisan akan didesain menggunakan EfficientNet. Diharapkan dapat tercapai tingkat akurasi yang tinggi dengan penggunaan jumlah parameter yang sedikit. Dalam penelitian ini akan mendesain empat model arsitektur CNN, yaitu model RGB tanpa contrast stretching, RGB dengan contrast stretching, Grayscale tanpa contrast stretching dan Grayscale dengan contrast stretching. Proses ujicoba akan mencakup proses pelatihan, validasi dan uji pada masing-masing input citra pada setiap model arsitektur. Dengan menggunakan penghitungan softmax sebagai penentu kelas klasifikasi. SGD optimizer digunakan sebagai optimization dengan learning rate 1e-1. Hasil penelitian akan dievaluasi dengan menghitung akurasi dan error dengan menggunakan metode F1-score. Penggunaan channel RGB tanpa contrast stretching sebagai citra input menunjukkan hasil uji coba yang terbaik.
Hyper Sudoku Solver dengan Menggunakan Harris Hawks Optimization Algorithm Eric Dinata; Herman Budianto; Hendrawan Armanto
Intelligent System and Computation Vol 2 No 1 (2020): INSYST:Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v2i1.153

Abstract

Sudoku merupakan salah satu permainan klasik yang digemari banyak orang. Sebagai salah satu permainan papan, Sudoku mempunyai banyak varian, salah satunya Hyper Sudoku. Hyper Sudoku mempunyai tingkat kesulitas yang lebih tinggi daripada Sudoku biasa. Tingkat kompleksitas yang tinggi membuat pemainan ini menjadi brain teaser yang baik dan sangat cocok diambil sebagai media untuk menguji algoritma metaheuristik. Algoritma yang populer pada dekade terakhir ini adalah algoritma metaheuristik berbasis populasi, yang mengadaptasi perilaku binatang dalam memecahkan permasalahan optimasi, salah satunya adalah Harris Hawks Optimization (HHO). Seperti kebanyakan metode swarm intelligence (SI) lainnya, algoritma ini mengandalkan proses diversification dan intensification. Selain itu, HHO mempunyai empat strategi khusus untuk mencari solusi dengan kondisi yang berbeda. HHO mampu mencakup solusi multi dimensi, sehingga sangat cocok diimplementasikan pada persoalan Hyper Sudoku. Untuk uji coba, peneliti menggunakan bantuan aplikasi Visual Studio 2017 dan MATLAB R2018a. Pada proses pengujian, digunakan dua setting parameter yang berbeda, tiga macam persoalan Hyper Sudoku, dan tiga puluh independent run untuk mencapai hasil yang diinginkan. Berdasarkan hasil pengujian, dapat disimpulkan bahwa tingkat keberhasilan untuk mencari solusi pada persoalan Hyper Sudoku dengan menggunakan HHO berkisar antara 86 hingga 88%, dilihat dari fitness value-nya.
Information Extraction Berbasis Rule Untuk Soal Ujian Stefanus Nico Soenardjo; Gunawan Gunawan
Intelligent System and Computation Vol 2 No 1 (2020): INSYST:Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v2i1.154

Abstract

Proses information extraction dapat dilakukan pada beberapa macam media, seperti artikel berita, tanya jawab dan sebagainya. Penelitian ini mencoba untuk melakukan information extraction pada media soal ujian yang dilengkapi dengan jawaban. Pendekatan pengolahan informasi yang dibahas dalam penelitian ini adalah information extraction berbasis rule. Informasi yang hendak digali adalah informasi data soal ujian beserta jawabannya. Inputan dalam penelitian ini pasangan file soal dan jawaban milik Cambridge. Ada beberapa mata pelajaran yang digunakan, yaitu Biologi, Matematika dan Ekonomi. Jenis soal yang digunakan juga ada beberapa macam, yaitu pilihan ganda dan esai. Hasil penelitian ini diharapkan bisa menjadi media pembelajaran. Penelitian dilakukan dengan menggunakan sebanyak 100 pasang data soal dan ujian. Sistem akan menerima 2 inputan file dengan format PDF. Kedua file ini merupakan pasangan soal dan jawaban. Proses yang diakukan adalah file akan dirubah menjadi 2, yaitu file HTML dan file PNG. File HTML mengandung semua teks soal dan file PNG mengandung semua gambar dari soal. Sistem akan mengambil teks dan gambar dari masing-masing soal dan jawaban berdasrkan rule yang sudah ditentukan. Penentuan rule dilakukan secara manual dengan mempelajari pola-pola data yang tedapat dalam tag HTML. Setelah proses ekstraksi, soal dan jawaban ini dipasangkan sesuai dengan nomor urutnya masing-masing. Pasangan soal dan jawaban ini kemudian akan disimpan ke dalam database. Dari hasil penelitian, tingkat akurasi yang didapatkan adalah sekitar 46%. Kendala utama yang dihadapi adalah format soal dan jawaban yang tidak strandar sehingga menimbulkan kesulitan dalam proses ekstraksi informasi.