cover
Contact Name
Esther Irawati Setiawan
Contact Email
esther@istts.ac.id
Phone
+62315027920
Journal Mail Official
insyst@istts.ac.id
Editorial Address
Kampus Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya) Ngagel Jaya Tengah 73-77, Surabaya, Indonesia
Location
Kota surabaya,
Jawa timur
INDONESIA
Insyst : Journal of Intelligent System and Computation
ISSN : 26219220     EISSN : 27221962     DOI : https://doi.org/10.52985/insyst
Core Subject : Science,
The Intelligent System and Computation Journal will be published for 2 editions in a year, every April and October. The Intelligent System and Computation Journal is an open access journal where full articles in this journal can be accessed openly. Review in this journal will be conducted with a blind review system. All articles in this journal will be indexed by Google Scholar. The topics contained in this journal consist of several fields (but not limited to): Algorithms and complexity Artificial Intelligence Big Data Analytics Biomedical Instrumentation Computational logic Computer Vision and Biometric Data and Web Mining Digital Signal Processing Image Processing Information Retrieval & Information Extraction Intelligence Embedded Systems Machine Learning Mathematics and models of computation Natural Language Processing Parallel & Distributed Computing Pattern Recognition Programming languages and semantics Speech Processing Virtual Reality & Augmented Reality
Articles 85 Documents
Deteksi Citra Pornografi Memanfaatkan Deep Convolutional Neural Network Kevin Setiono; Yosi Kristian; Gunawan Gunawan
Intelligent System and Computation Vol 3 No 1 (2021): INSYST: Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v3i1.172

Abstract

Internet merupakan salah satu sumber informasi yang sangat mudah diakses dan sangat lengkap pada zaman sekarang ini. Dari banyaknya konten tersebut terdapat konten pornografi yang meresahkan dan memberikan dampak buruk pada perkembangan anak-anak. Hingga tahun 2020 pemblokiran konten pornografi menyumbang 70 persen dibandingkan konten negative lainnya. Metode untuk mencegah/memblokir konten pornografi ada berbagai macam mulai dari memblokir websitenya hingga mendeteksi berdasarkan citra yang ada. Penelitian ini akan mencoba mendeteksi citra pornografi dengan bantuan Deep Convolutional Neural Network. Pembuatan model menggunakan transfer learning hingga fine tuned fine transfer learning dan mencoba model-model state of the art. Penelitian ini menghasilkan model yang mampu mendeteksi citra pornografi dengan akurasi 78%. Selain memiliki akurasi yang cukup tinggi model ini juga mampu mendeteksi bagian-bagian intim dari wanita yang menjadi fitur dari citra pornografi. Kemampuan mendeteksi fitur tersebut telah diujicoba dengan mengubah model yang digunakan penelitian ini sebagai detektor objek pada citra pornografi.
Disjoint Community Detection pada Network Kegiatan Kemahasiswaan di ISTTS Menggunakan Fast Greedy dan Walktrap Mikhael Setiawan; Gunawan; F.X.Ferdinandus
Intelligent System and Computation Vol 3 No 1 (2021): INSYST: Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v3i1.175

Abstract

Disjoint community detection bertujuan untuk menemukan sebuah komunitas pada network dengan melakukan pemisahan. Pada penelitian ini, disjoint akan dilakukan pada network kegiatan kemahasiswaan di ISTTS. Metode disjoint community detection yang digunakan adalah fast greedy dan walktrap algorithm.  Data kegiatan kemahasiswaan berisi mengenai mahasiswa bersama-sama dengan mahasiswa lainnya mengikuti kegiatan kemahasiswaan apa saja. Setelah disjoint berhasil dilakukan, maka akan dihitung nilai closeness centrality dari setiap mahasiswa, dimana pada akhirnya akan dihitung correlation coefficient dengan IPK mahasiswa tersebut untuk mencari hubungan antara centrality mahasiswa dengan IPK mereka. Hasil closeness centrality ini selanjutnya di rata-rata untuk semua hasil algoritma untuk melihat bagaimana korelasi closeness centrality dengan ipk mahasiswa tersebut. Uji coba dilakukan dengan membentuk gml dari kombinasi filter, yang menghasilkan sekitar 2527 gml dengan nilai akhir korelasi adalah 62 - 63% weak positif dengan diikuti 16-18% moderate positif, dan 14-16% tidak berkorelasi sama sekali. Akhirnya dapat disimpulkan bahwa closeness centrality dalam sebuah komunitasnya, hanya berpengaruh secara weak positif dengan ipk mahasiswa tersebut.
DETEKSI POLISI TIDUR PADA JALAN MENGGUNAKAN ANILISIS BLOB DAN KONVOLUSIONAL NEURAL NETWORK Ervin Indra Nugraha; Yuliana Melita Pranoto
Intelligent System and Computation Vol 3 No 1 (2021): INSYST: Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v3i1.180

Abstract

Polisi tidur merupakan pembatas kecepatan laju dari kendaraan yang sengaja ditempatkan diatas jalan. Polisi tidur memiliki dua jenis karakteristi. Polisi tidur memiliki ukuran berbeda yang ditemui pada beberapa perumahan, ditempat ujian sim, dan yang sering dijumpai pada perumahan atau jalan dengan beragam warna yang berbeda. Deteksi polisi tidur pada jalan akan menggunakan dua metode Anilisis blob dan CNN. Proses deteksi polisi tidur akan dilakukan menggunakan anilisis blob, saat metode anilisis blob tidak mendeteksi adanya polisi tidur maka akan dilakukan proses CNN untuk melakukan deteksi. Dalam proses anilisis blob, alur penelitian deteksi akan dilakukan menggunakan anilisis blob, pada saat proses blob tidak mendeteksi adanya polisi tidur maka proses deteksi akan dilanjutkan menggunakan CNN. Sebelum dilakukan proses deteksi menggunakan blob, gambar atau video frame akan diproses menggunakan proses preprosesing, morfologi erosi dan dilasi. Penggunaan proses preprosesing dan morfologi dilakukan agar objek berupa polisi tidur dapat dipisahkan dari gambar background yaitu aspal. Uji coba pada penelitian akan dilakukan pada 10 buah video dengan durasi minimal 30 detik dan 100 gambar polisi tidur yang diproses pada dataset. Pada dataset akan dikelompokan untuk dilakukan klasifikasi yaitu berwarna dan tidak berwarna. Setiap warna polisi tidur yang terdeteksi akan dicatat dan berapa banyak pada warna tersebut polisi tidur dapat dideteksi. Kedua metode yang digabungkan mendapatkan hasil deteksi yang baik dengan hasil  76% terhadap polisi tidur pada perumahan. Pada uji coba rata-rata polisi tidur tanpa warna atau warna yang sama dengan aspal dan penggunaan paving pada jalan mempengaruhi tingkat akurasi dari deteksi polisi tidur.
2D Data Visualization Tools Menggunakan Flask dan AngularJS JERRYL JEOVANO
Intelligent System and Computation Vol 2 No 2 (2020): INSYST:Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v2i2.184

Abstract

Data merupakan bagian penting dari semua aplikasi. Namun seiring perkembangan aplikasi dan kecepatan stream data, volume data yang dihasilkan telah melebihi milyaran data. Semakin besar volume data, maka semakin sulit juga data tersebut dianalisa. Tujuan pembuatan software ini untuk memvisualisasikan data user dari file yang diupload kepada sistem. Memudahkan tim analis untuk memprediksi dan memajukan sebuah usaha. Visualisasi data berjalan fleksibel, sehingga user dapat menentukan sendiri data pada bagian axis-axisnya. Pembuatan website ini menggunakan framework Flask yang berbasis pada bahasa pemrograman Python, database cassandra merupakam database nosql yang mana digunakan untuk penyimpanan data website ini. Sedangkan visualisasi, website ini menggunakan library DevExpress dan Google Chart yang berbasis AngularJS. AngularJS sendiri merupakan perluasan dari bahasa pemrograman HTML. Metodologi yang akan digunakan pada pembuatan website ini adalah Scrum. Prose pembuatan website ini dilakukan dalam 4 sprint. Masing-masing sprint dalam penelitian ini berlangsung dalam jangka waktu 14 hari. Dari hasil penelitian ini dapat disimpulkan bahwa penggunaan metode scrum untuk membuat web untuk visualisasi data berjalan dengan efektif karena dalam proses pembuatan web ini lebih terstruktur sehingga time management menjadi lebih efisien. Library DevExpress lebih mudah digunakan daripada menggunakan library Google Chart. Dalam menampilkan chart, library DevExpress hanya dapat menampilkan sebuah chart dalam satu halaman.
Ekstraksi Ulasan Sentimen Film dari Twitter dengan Naïve Bayes pada Situs Web Media Sosial Penggemar Film Adri Gabriel Sooai; Melania Laniwati
Intelligent System and Computation Vol 3 No 1 (2021): INSYST: Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v3i1.186

Abstract

Film dianggap sebagai bentuk seni serta merupakan sumber hiburan yang populer. Pembuatan penelitian ini diharapkan bisa membantu orang Indonesia untuk mendapatkan informasi tentang film serta membaca review dari film. Review film yang ada pada website ini didapatkan dari user-user lokal maupun dari Twitter. Sistem mengekstraksi dan mengkategorikan isi sentiment dari sebuah barisan teks tweet dengan menggunakan metodologi Basic Unified Process. Proses klasifikasi sentiment yang ada bertujuan untuk mengklasifikasi review sebagai positif/negatif. Seluruh tweet akan diproses melalui Feature Reduction dan Normalisasi. Proses Feature Reduction akan menghapus hashtag, username, link, dan tanda baca pada tweets. Pada proses Normalisasi, seluruh singkatan dan kata bukan baku pada tweets akan diganti. Penelitian ini menggunakan sistem Rule-Based dalam menentukan apakah tweet tersebut merupakan review film atau bukan. Penulis menggunakan algoritma Naïve Bayes untuk mengklasifikasi sentiment (positif/negatif) dari review. Penulis telah melakukan 8 buah pengujian, masing-masing 4 kali untuk pengujian sistem Rule-Based dan Naïve Bayes Classifier. Total data tweet yang diujicobakan adalah sebanyak 6.323, dan hasil akhir paling optimal yang didapatkan oleh sistem terhadap Rule-Based System menghasilkan akurasi sebesar 82,64% dan terhadap Naïve Bayes Classifier sebesar 74,09%. Dari hasil pengujian paling optimal ini, sistem mendapatkan nilai recall dan presisi masing-masing sebesar 71,44% dan 77,92% untuk Rule-Based System, serta 83,77% dan 77,65% untuk Naïve Bayes.
Pengukuran Material Pada Bak Truk Berbasis Citra Reddy Alexandro Harianto
Intelligent System and Computation Vol 3 No 1 (2021): INSYST: Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v3i1.187

Abstract

Proses pengukuran Material bak Truk membutuhkan waktu yang lama jika dilakukan dengan manual. Pengukuran Material Pada Bak Truk Berbasis Citra adalah sebuah terobosan untuk mengukur volume material secara otomatis menggunakan stereo image dengan durasi yang cepat. ZED Stereo Camera digunakan untuk scanning bak truk dan NVIDIA Jetson TX 1 digunakan menghitung muatannya. Pada tahap scanning dilakukan berbagai proses pengolahan citra seperti grayscaling, blurring, thresholding otsu, morphology operation dengan tujuan mengambil nilai depth bak truk dan mencari jarak maksimum serta minimum pada depth bak truk. Proses scanning dilakukan 2 kali yaitu pada saat truck kosong dan truk yang terdapat muatan. Setelah kedua data scanning terpenuhi dilakukan tahap perhitungan material dengan mengolah depth value, sebelumnya depth value dilakukan normalisasi terlebih dahulu. Setelah nilai depth didapatkan dilakukan rumus perhitungan volume pada bak yang berisi, dan juga di lakukan perhitungan volume bak kosong. Selisih dari nilai bak kosong di bandingkan dengan nilai bak isi inilah yang disebut sebagai volume muatan bak truk. Uji coba dilakukan pada jam 07.00-17.30 dengan truk yang berbeda. Terdapat 147 data percobaan terdapat 31 data yang tidak dapat ditemukan nilai depth value nya di karenakan pencahayaan yang kurang baik pada proses scanning. Dari scanning yang berhasil diprediksi nilai volume nya dan dibandingkan dengan nilai volume dengan metode perhitungan manual RMSE perhitungannya pada angka 0.814.
Tamagotchi Augmented Reality yang Dilengkapi dengan Mini Games Hendrawan Armanto; Edwin Sidharta
Intelligent System and Computation Vol 3 No 2 (2021): INSYST: Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v3i2.189

Abstract

Pada saat ini, teknologi mobile telah berkembang dengan pesat. Dalam kesehariannya, manusia tidak dapat lepas dari handphone. Hal ini menyebabkan munculnya berbagai aplikasi dan game yang bertujuan tentu saja untuk membantu ataupun memberikan kesenangan kepada penggunanya. Saat ini perkembangan game, juga sangat pesat dan telah mencapai titik dimana berbagai jenis game dikembangkan. Tidak hanya berhenti pada perkembangan jenis game, bahkan cara bermain dari game itu sendiri juga ikut berkembang. Yang dulunya permainan mobile dilakukan secara virtual, saat ini permainan sudah menyentuh area Augmented Reality (AR) dimana pemain dapat melihat benda-benda tidak nyata (buatan) dalam dunia nyata (dunia manusia). Walaupun permainan AR semakin berkembang, tetapi masih sedikit permainan AR bergenre Virtual Pet. Penelitian ini bertujuan untuk mengembangkan Permainan Virtual Pet dan mengukur tingkat kesenangan dalam memainkan permainan ini. Permainan dikembangkan dengan menggunakan Unity Game Engine dengan bantuan package AR Foundation dan penyimpanan data pada Firebase. Ujicoba akan dilakukan kepada 40 orang (pria dan wanita) pemain game yang pernah bermain virtual pet sebelumnya. Hasil akhir ujicoba menunjukan bahwa dalam segi teknis permainan berjalan dengan baik dan disukai oleh pemain akan tetapi ada sebagian pemain yang tingkat kesenangannya rendah cenderung menengah hal ini dikarenakan gambar monster yang digunakan kurang menarik dan kurangnya fitur terkait monster itu sendiri.
Sentiment Classification untuk Opini Berita SepakBola Eka Rahayu Setyaningsih
Intelligent System and Computation Vol 3 No 2 (2021): INSYST: Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v3i2.193

Abstract

Pada penelitian ini akan dibahas mengenai sebuah aplikasi yang dibuat secara khusus untuk mengkategorikan opini masyarakat terhadap sebuah berita Sepak Bola. Opini yang diolah diperoleh dari dua sumber, yaitu melalui hasil crawl situs berita olah raga dan opini yang ditambahkan oleh user sendiri pada aplikasi ini. Opini yang ada nantinya akan disajikan secara terpisah menurut kelompoknya; sentiment positive, negative, maupun netral. Proses klasifikasinya sendiri terdiri dari dua tahap. Tahap pertama adalah proses preprocessing yang terdiri atas proses tokenisasi, normalisasi, case folding, stop word removing, common word removing, stemming. Tahap kedua adalah mengklasifikasikan opini-opini tersebut dengan algoritma Baseline, dan Naive Bayes. Opini yang digunakan untuk proses klasifikasi yaitu opini yang menggunakan bahasa Inggris dari situs fifa.com dan goal.com. Dari perhitungan macroaveraged untuk setiap kelas, didapatkan akurasi 93,06%, presisi 81,90%, dan recall 92,67% untuk kelas sentiment positive. Dari perhitungan kelas sentiment negative didapatkan akurasi 87,73%, presisi 96,29%, dan recall 83,63%. Dari perhitungan kelas sentiment netral didapatkan akurasi 92,26%, presisi 64,44%, dan recall 90,37%. Kesimpulan yang diperoleh saat penelitian ini dari awal hingga akhir adalah, proses crawling yang digunakan untuk mendapatkan berita dan komentar berita sangat membantu dalam penambahan konten website, tetapi banyak sekali komentar berita yang diperoleh kurang cocok untuk proses klasifikasi.
Sistem Manajemen Kartu Nama dengan OCR dan Ekstraksi Informasi Otomatis Robby Darmawan; Aris Nasuha; Lukman Zaman; Hendrawan Armanto
Intelligent System and Computation Vol 3 No 2 (2021): INSYST: Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v3i2.194

Abstract

Sebagai pelaku bisnis, kartu nama adalah salah satu hal yang penting untuk bertukar informasi. Namun kartu nama biasanya mudah hilang atau rusak, sehingga beberapa orang biasanya menyimpan informasi dari kartu nama itu pada telepon genggam atau komputer mereka. Penelitian ini akan membuat sistem manajemen kartu nama baik individu dan juga perusahaan dengan ekstraksi informasi kartu nama otomatis untuk mempermudah pengguna perorangan ataupun perusahaan dalam melakukan penyimpanan kartu nama para kolega. Untuk mewujudkan aplikasi yang dilengkapi dengan fitur tersebut dilakukan proses pengenalan karakter pada gambar kartu nama menggunakan Tesseract OCR dan information extraction memanfaatkan klasifikasi entity dengan membangun classifier menggunakan Naive Bayes dan mengkombinasikannya dengan rule based. Hasil uji coba yang telah dilakukan mendapatkan performa 85.1% untuk pengenalan karakter dan 86% untuk pengklasifikasian entity. Dilakukan juga uji coba fungsionalitas terhadap setiap fitur pada sistem ini dengan menggunakan metode blackbox testing yang memastikan setiap aksi yang dilakukan pengguna akan menghasilkan output sesuai target yang diharapkan. Selain itu, dari hasil kuisioner yang berisikan tentang usability dari sistem ini, sebagian besar responden merasa terbantu dalam memanajemen kartu nama dengan menggunakan sistem aplikasi ini.
Web Content Extractor Menggunakan Neural Network untuk Konten Artikel di Internet Syabith Umar Ahdan; Joan Santoso; Hendrawan Armanto
Intelligent System and Computation Vol 3 No 2 (2021): INSYST: Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v3i2.195

Abstract

Berkembangnya teknologi Javascript khususnya AJAX dan CSS membuat halaman web yang dulunya statis menjadi lebih dinamis dengan tampilan yang lebih menarik dan dipenuhi iklan dan rekomendasi artikel lain. Oleh karena itu, sulit untuk mengotomatisasi proses pengambilan konten artikel pada konteks ini. Penelitian ini dibuat untuk menyelesaikan masalah otomatisasi pengambilan konten artikel di Internet. Aplikasi web yang akan dibuat terbagi menjadi empat modul, yaitu web crawler, web extractor, content classifier dan web visualizer. Penelitian ini memiliki dua desain arsitektur. Arsitektur yang pertama adalah arsitektur saat training. Arsitektur yang kedua adalah arsitektur program jadi. Proses training menggunakan 200 URL halaman web dari lima website berbeda. Metode pengujian yang akan digunakan adalah 4-Fold Cross Validation, sehingga 75% dari blok teks akan menjadi data latihan dan 25% dari blok teks akan menjadi data pengujian. Program jadi berupa Web Visualizer yang mengolah JSON file berisi hubungan antara halaman web yang didapatkan dari web crawler sehingga dapat dipresentasikan dalam sebuah grafik. Kesimpulan dari penelitian ini adalah bahwa kombinasi Scrapy, Splash, Neural Network Classifier dan D3 bekerja sangat baik untuk automasi ekstraksi konten artikel website di Internet sekaligus memvisualisasi hubungan antar halaman web. Deep Feed Forward Neural Network (DFFNN) dapat melakukan klasifikasi multi-class konten judul, penulis, dan isi artikel dengan baik selama template halaman web sudah pernah dilatih sebelumnya. DFFNN juga dapat melakukan klasifikasi binari untuk halaman web secara umum dengan F1-score 62.87%, dua kali lebih baik dari SVM yang hanya 31.28%.