cover
Contact Name
Ivandini Tribidasari A.
Contact Email
ivandini.tri@sci.ui.ac.id
Phone
+622129120943
Journal Mail Official
editor_mss@ui.ac.id
Editorial Address
Directorate of Research and Community Engagement UNIVERSITAS INDONESIA UI Campus, Depok 16424 Indonesia
Location
Kota depok,
Jawa barat
INDONESIA
Makara Journal of Science
Published by Universitas Indonesia
ISSN : 23391995     EISSN : 23560851     DOI : https://doi.org/10.7454/mss
Core Subject :
Makara Journal of Science publishes original research or theoretical papers, notes, and minireviews on new knowledge and research or research applications on current issues in basic sciences, namely: Material Sciences (including: physics, biology, and chemistry); Biochemistry, Genetics, and Molecular Biology (including: microbiology, physiology, ecology, taxonomy and evolution); and Biotechnology.
Arjuna Subject : -
Articles 6 Documents
Search results for , issue "Vol. 19, No. 1" : 6 Documents clear
Flavonoid Compounds from the Bark of Aglaia eximia (Meliaceae) Sianturi, Julinton; Purnamasari, Mayshah; Mayanti, Tri; Harneti, Desi; Supratman, Unang; Awang, Khalijah; Hayashi, Hideo
Makara Journal of Science Vol. 19, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Three flavonoid compounds, kaempferol (1), kaempferol-3-O-α-L-rhamnoside (2), and kaempferol-3-O-β-D-glucosyl-α-L-rhamnoside (3), were isolated from the bark of Aglaia eximia (Meliaceae). The chemical structures of compounds 1–3 were identified with spectroscopic data, including UV, IR, NMR (1H, 13C, DEPT 135°, HMQC, HMBC, 1H-1H-COSY NMR), and MS, as well as a compared with previously reported spectra data. All compounds were evaluated for their cytotoxic effects against P-388 murine leukemia cells. Compounds 1–3 showed cytotoxicity against P-388 murine leukemia cells with IC50 values of 1.22, 42.92, and >100 mg/mL, respectively
The Use of TiO2-SiO2 in Photocatalytic Process to Degrade Toxic and Dangerous Waste Destiarti, Lia; Tjokronegoro, Roekmiati; Rakhmawaty, Diana; Rudiyansyah,
Makara Journal of Science Vol. 19, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study was conducted to investigate the use of TiO2 immobilized on SiO2 (TiO2-SiO2) in a photocatalytic process to degrade toxic industrial waste, phenol, linear alkylbenzene sulfonate (LAS), and Cr(VI), which is dangerous for humans and the environment. Titanium dioxide (TiO2), as a photocatalyst, can make the solution become turbid. Thus, TiO2-SiO2 was used to increase the possibility of ultraviolet (UV) transmission. The phenol and LAS levels were measured with the Indonesian National Standard (INS) while the Cr(VI) level was determined with the colorimetric method. The activity test for the catalyst in suspension and immobilization against phenol showed that TiO2-SiO2 was more active than TiO2. By using the photocatalytic process with the TiO2-SiO2 photocatalyst for 8 h, degradation of phenol and LAS reached 50% as a single compound and 12% as a mixture. However, TiO2-SiO2 did not decrease Cr(VI)
Isolation of Asphaltene-Degrading Bacteria from Sludge Oil Aditiawati, Pingkan; Kamarisima,
Makara Journal of Science Vol. 19, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Sludge oil contains 30%–50% hydrocarbon fractions that comprise saturated fractions, aromatics, resins, and asphaltene. Asphaltene fraction is the most persistent fraction. In this research, the indigenous bacteria that can degrade asphaltene fractions from a sludge oil sample from Balikpapan that was isolated using BHMS medium (Bushnell-Hass Mineral Salt) with 0.01% (w/v) yeast extract, 2% (w/v) asphaltene extract, and 2% (w/v) sludge oil. The ability of the four isolates to degrade asphaltene fractions was conducted by the biodegradation asphaltene fractions test using liquid cultures in a BHMS medium with 0.01% (w/v) yeast extract and 2% (w/v) asphaltene extract as a carbon source. The parameters measured during the process of biodegradation of asphaltene fractions include the quantification of Total Petroleum Hydrocarbon (g), log total number of bacteria (CFU/ml), and pH. There are four bacteria (isolates 1, 2, 3, and 4) that have been characterized to degrade asphaltic fraction and have been identified as Bacillus sp. Lysinibacillus fusiformes, Acinetobacter sp., and Mycobacterium sp., respectively. The results showed that the highest ability to degrade asphaltene fractions is that of Bacillus sp. (isolate 1) and Lysinibacillus fusiformes (Isolate 2), with biodegradation percentages of asphaltene fractions being 50% and 55%, respectively, and growth rate at the exponential phase is 7.17x107 CFU/mL.days and 4.21x107 CFU/mL.days, respectively.
Leaf Trichome Morphology of Durio Kutejensis Landraces from Kalimantan Priyanti,; Chikmawati, Tatik; Sobir,; Hartana, Alex
Makara Journal of Science Vol. 19, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The leaf trichome morphology of 19 Durio kutejensis (lai) landraces was studied. The observation of cross- and paradermal sections of D. kutejensis leaves showed that all landraces have glabrous leaves on the adaxial surface, while their abaxial surfaces are covered by six trichome types, one glandular (one- or two-celled stalks with a spheroid multicellular glandular head) and five non-glandular (complex peltate, simple peltate, cushioned stellate, flat stellate, and four-armed stellate trichome with a central cushion). All landraces were rarely covered by glandular trichomes. The non-glandular trichomes are varied in type, density, number of layers, diameter, and shape and margin color of the complex peltate among landraces. One landrace comprises three non-glandular trichome types, while the other landraces consist of four or five non-glandular trichome types. The shapes and margin color of complex peltate trichomes of D. kutejensis are the specific characteristics which distinguish this species from the other Durio species, however these characteristics cannot be used to differentiate one D. kutejensis landraces from the other. Therefore, other characteristics need to be explored in order to distinguish one D. kutejensis landraces from the other.
The Molecular Diversity-based ISSR of Durio tanjungpurensis Originating from West Kalimantan, Indonesia Riupassa, Pieter Agusthinus; Chikmawati, Tatik; Miftahudin,; Suharsono,
Makara Journal of Science Vol. 19, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The Durian Tengkurak (Durio tanjungpurensis Navia) is one of the endangered exotic species in the Malvaceae family. The species is important for conservation of the germplasm and is considered a potential genetic resource for the development of durian in the future. The objective of this research project was to assess the molecular diversity of D. tanjungpurensis in West Kalimantan, based on Inter Simple Sequence Repeat (ISSR) markers. We applied ten ISSR primers to reveal the genetic diversity of 60 individuals from six natural endemic D. tanjungpurensis populations. The genetic diversity parameters were estimated based on binary data about PCR products (present or absent bands). The results showed that the mean number of observed alleles, the mean number of effective alleles, the genetic diversity, the Shannon’s Information Index score, the number of polymorphic loci, and the percentage of polymorphic loci were 1.53, 1.29, 0.17, 0.26, 77.83, and 52.59, respectively. An analysis of molecular variance (AMOVA) showed that the genetic diversity within a population (65%) was higher than that found between the populations (35%). UPGMA clustering and principal coordinate analysis, based on the DICE similarity matrix, were used to classify the populations into three groups: 1) Hutan Rejunak and Tembaga, 2) Bukit Merindang, and 3) Hutan Rawak, Bukit Sagu 1, and Bukit Sagu 2. Further analysis of the population structure using STRUCTURE software was used to classify all the individuals into two major categories, thus uniting Groups 2 and 3 as one major category. In conclusion, a high level of genetic diversity in the Durian Tengkurak was revealed utilizing the ISSR markers employed in the study.
Effects of Nitrate and Salinity on Fatty Acid Composition of Marine Tetraselmis sp.: Potential as Biodiesel Noriko, Nita; Prayitno, Joko; Anggraini, Bunga
Makara Journal of Science Vol. 19, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Identifying sources of renewable energy is extremely important. The potential of Tetraselmis sp. in biodiesel production was investigated using a completely randomized design with four treatments. Tetraselmis sp. was cultured on media containing different concentrations of nitrate there are 2 mM and 15 Mm and s 25 ‰ and 35 ‰ salinity. The treatments namely are (N2S25), (N2S35), N15S25) and (N15S35). Analysis of the fatty acid content using gas chromatography-mass spectrometry (GC-MS). The results showed that the highest growth occurred in culture that contained 15 mM of nitrate and 35 ‰ salinity. The lowest growth occurred in culture containing 2 mM of nitrate and 25‰ of salinity. The highest lipid content was found in cultures containing 2 mM of nitrate and 25‰ salinity, it is 34.83%. Seven fatty acids were detected in culture containing 2 mM of nitrate and 25‰ salinity namely myristic acid (4.02%), palmitic acid (40.59%), palmitoleic acid (29.06%), stearic acid (0.95%), oleic acid (12.52%), gamma-linolenic acid (2.56%), and arachidonic acid (9.38%). Four fatty acids palmitoleic acid (8.99%), palmitic acid (37.34%), oleic acid(44.89%), and stearic acid (8.78%) were detected in 2 mM of nitrate with 35‰ salinity. The fatty acids have potential to be used as raw material for biodiesel production.

Page 1 of 1 | Total Record : 6