cover
Contact Name
Andi Firdaus Sudarma
Contact Email
andi.firdaus@mercubuana.ac.id
Phone
+6221-5840815
Journal Mail Official
ijimeam@mercubuana.ac.id
Editorial Address
Universitas Mercu Buana Program Studi S2 Teknik Mesin Jl. Meruya Selatan No. 01, Kembangan, Jakarta Barat 11650, Indonesia
Location
Kota adm. jakarta barat,
Dki jakarta
INDONESIA
International Journal of Innovation in Mechanical Engineering and Advanced Materials
ISSN : 2477541X     EISSN : 24775428     DOI : https://dx.doi.org/10.22441/ijimeam
The journal publishes research manuscripts dealing with problems of modern technology (power and process engineering, structural and machine design, production engineering mechanism and materials, etc.). It considers activities such as design, construction, operation, environmental protection, etc. in the field of mechanical engineering and other related branches. In addition, the journal also publishes papers in advanced materials related with advanced electronic materials, advanced energy materials, advanced engineering materials, advanced functional materials, advanced materials interfaces, and advanced optical materials.
Articles 6 Documents
Search results for , issue "Vol 6, No 2 (2024)" : 6 Documents clear
Heat Distribution Simulation in a Square Aluminum 7075 Plate Using Laplace Equation and MATLAB Pudjiwati, Sri; Sudarma, Andi Firdaus; Tarigan, Kontan; Khaerudini, Deni Shidqi; Djajadiwinata, Eldwin
International Journal of Innovation in Mechanical Engineering and Advanced Materials Vol 6, No 2 (2024)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/ijimeam.v6i2.25356

Abstract

The efficient management of heat transfer from aircraft engines to the wings is vital for maintaining thermal efficiency and structural integrity in modern aircraft design. Excessive heating of the wings, caused by engine-generated heat, can negatively impact aerodynamic performance and safety. This study focuses on analyzing heat distribution in a square aluminum 7075 plate to better understand heat transfer mechanisms. Using the Laplace equation, implemented through MATLAB (2023 Online Version), we aim to simulate and analyze heat distribution on the plate. The numerical method employed in this research involves solving the Laplace equation with Neumann boundary conditions, which represent insulated edges. The Liebmann method is used to iteratively reduce error to less than 1%. Simulations are conducted on an aluminum 7075 plate of dimensions 4x10⁻² m x 4x10⁻² m under various temperature conditions at the edges. Numerical results show that at the 9th iteration, the error reaches 0.71%, while MATLAB simulations yield an error of 0.4681% at the same iteration. The heat distribution across the plate is clearly visualized, and the analysis indicates that increasing the number of grids improves both the clarity and accuracy of the simulation results. In conclusion, this study demonstrates that applying the Laplace equation via MATLAB is an effective approach for analyzing heat distribution in aluminum 7075 plates. The results show that a finer grid resolution enhances accuracy, with a 101-grid system providing particularly clear and precise heat distribution patterns. These findings contribute to the optimization of thermal system designs, especially in aviation-related applications.
Ride Test on Vehicles Travelling Over Speed Bumps: Simulation with CarSim Software Lenahatu, Adetia; Yamin, Mohamad
International Journal of Innovation in Mechanical Engineering and Advanced Materials Vol 6, No 2 (2024)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/ijimeam.v6i2.26135

Abstract

This study explores the effects of different speed bump geometries—flat-topped, sinusoidal, and parabolic—on vehicle dynamics and ride comfort using CarSim simulations. The analysis focuses on key parameters such as vertical forces on the suspension, vertical acceleration, and the wheel surface adhesion index. The results show that flat-topped bumps generate the highest vertical forces, reaching peaks of up to 6,000 N on the front suspension, leading to increased discomfort. Sinusoidal bumps, in contrast, generate smoother transitions, with vertical forces peaking at approximately 3,500 N, improving ride comfort. At vehicle speeds of 30 km/h, the vertical forces on the suspension increase significantly, with flat-topped bumps reducing the wheel surface adhesion index to as low as 0.6, indicating a higher risk of wheel slip and compromised vehicle stability. In contrast, sinusoidal bumps maintain a more favorable adhesion index of 0.85 at similar speeds. These reductions in adhesion elevate the risk of loss of control, especially at higher speeds. The findings suggest that adaptive suspension systems, capable of adjusting damping and stiffness based on the bump geometry and vehicle speed, would enhance ride quality and stability. Additionally, smoother bump designs, such as sinusoidal profiles, are recommended to reduce the impact on vehicle dynamics, particularly in urban environments. These insights contribute to improving both vehicle design and road safety, ensuring safer and more comfortable driving experiences.
Impact of Extended Intervals on Diesel Engine Performance with 15W-40 DH1 Lubricant Oil Suprihatiningsih, Wiwit; Priyanto, Arief; Nurato, Nurato; Chairat, Arief Suardi Nur; Prumanto, Denny
International Journal of Innovation in Mechanical Engineering and Advanced Materials Vol 6, No 2 (2024)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/ijimeam.v6i2.25014

Abstract

Engine lubricant oil is crucial for minimizing friction between moving components within an engine, directly influencing the engine's reliability and lifespan. Determining the appropriate oil replacement intervals is essential, as extending these intervals necessitates more rigorous monitoring of both oil quality and engine condition. This study investigated the performance of SAKAI 15W-40 DH1 engine oil in the SAKAI Vibrating Roller SV526 over varying operational periods: 125 hours, 250 hours, 375 hours, and 500 hours. The research involved analyzing oil samples for viscosity, metal additives, total base number (TBN), and contaminants using Fourier Transform Infrared Spectroscopy (FTIR). Additionally, key engine performance indicators, including fuel consumption, valve clearance, and compression pressure, were measured. The findings revealed a gradual decrease in oil viscosity from 13.48 cSt to 11.56 cSt, approaching the minimum acceptable threshold of 11.45 cSt. Concurrently, the Fe content in the oil increased to 11 ppm, indicating wear, while the valve clearance in cylinder number three expanded to 0.48 mm, and compression pressure dropped from 31 kg/cm² to 28 kg/cm². Despite these changes, the oil remained within the standard operational limits, and the engine continued to perform adequately. However, based on the observed trends, extending the oil replacement interval to 500 hours cannot be conclusively recommended, as the oil's condition and engine performance may begin to decline beyond this point.
Performance Evaluation of a Condenser at a Combined Cycle Power Plant Using the LMTD Method Swardhamana, Putut Jaya; Ruhyat, Nanang; Novianto, Sentot
International Journal of Innovation in Mechanical Engineering and Advanced Materials Vol 6, No 2 (2024)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/ijimeam.v6i2.27450

Abstract

This study evaluates the performance of the condenser at the Cilegon Combined Cycle Power Plant (CCPP) using the Logarithmic Mean Temperature Difference (LMTD) method to measure the heat transfer rate. Routine maintenance carried out on the condenser in the form of cleaning the condenser water box and condenser tube from garbage and crust on the condenser tube wall. Currently, condenser maintenance follows a routine schedule that is tied to steam turbine maintenance, without taking actual condenser performance into account. This can lead to inefficiencies and unnecessary downtime. The goal of this research is to assess the heat transfer rate of the condenser before and after maintenance to judge its effectiveness. Data on temperature changes were gathered in June 2023, before maintenance, and again in July 2023, after an overhaul. The analysis shows that the heat transfer rate increased from 51,362,294.48 kcal/h to 127,246,219.7 kcal/h, while the LMTD value rose from 0.76°C to 1.86°C. Based on these results, the study suggests a new approach to maintenance that focuses on performance. Specifically, maintenance should be done when the heat transfer rate drops below 110,000,000 kcal/h. This approach will help ensure the condenser works at its best, improve the plant's overall efficiency, and prevent the need for unnecessary maintenance. By aligning maintenance with performance data, the plant can boost output while lowering costs and downtime.
Heat Mapping and Plastic Strain Radius Modeling of Dual-Tool Friction Stir Welds 6061 Aluminum Alloy Plate Using FEM Youlia, Rikko Putra; Utami, Diah; Romahadi, Dedik; Yishuang, Tang
International Journal of Innovation in Mechanical Engineering and Advanced Materials Vol 6, No 2 (2024)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/ijimeam.v6i2.28235

Abstract

This study investigates the effects of Dual-Tool Friction Stir Welding (DT-FSW) parameters on the weld quality of 8 mm thick 6061 aluminum alloy plates, specifically focusing on the elimination or minimization of the "pass-overlap zone" that’s a gap typically observed at the mid-section of the weld cross-section resembling characteristics of the Heat-Affected Zone (HAZ). To address ongoing debates regarding the optimal joint performance concerning this overlap, symmetric increases in the dimensions of both FSW tools were implemented to analyze resultant temperature fields and plastic strain adaptations at the weld interfaces. Simulation visualizations were conducted with tool density variations at intervals of 0.2 mm and 0.4 mm. Results indicate that increasing tool density, thereby reducing the distance between tool surfaces, leads to a decrease in peak temperatures generated during welding. This reduction in temperature correlates with a more uniform distribution of plastic strain rates across all layers of the material—upper, middle, and lower—with the leading edge exhibiting the most significant improvement in strain uniformity. Conversely, during the stabilization phase, a decrease in tool density (S) results in a reduction of the maximum equivalent plastic strain rate. These findings suggest that careful adjustment of tool density in DT-FSW processes can enhance weld quality by promoting more uniform mechanical and thermal properties across the joint.
Condensate Water Processing of Split-Unit Air Conditioning System on Commercial Building Nasution, Henry; Aubaidellah, Nurul Hanim
International Journal of Innovation in Mechanical Engineering and Advanced Materials Vol 6, No 2 (2024)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/ijimeam.v6i2.23744

Abstract

This research investigates the feasibility and potential for water recovery from condensate produced by a split-unit air conditioning (AC) system in a commercial building, focusing on Scholar’s Inn UTM (SIUTM) in Johor, Malaysia. The study involves the collection and measurement of condensate water from 243 AC units under various operational conditions. The results indicate that the building can produce up to 4,781 liters of condensate per day, amounting to an annual total of approximately 1,721,160 liters. This significant volume highlights the potential for utilizing condensate as an alternative water source, especially in regions with similar hot and humid climates. Water quality analysis was conducted to evaluate the suitability of the condensate for various applications. The condensate water exhibited a pH of 7.17, Total Dissolved Solids (TDS) of 1.0 mg/L, and a copper (Cu) concentration of 1.1 mg/L. While these parameters indicate that the water is within acceptable ranges for non-potable uses, such as irrigation or cooling tower makeup water, the copper concentration slightly exceeds the standard for potable water, necessitating treatment such as reverse osmosis before consumption. The study’s findings underscore the environmental and economic benefits of condensate recovery, offering a sustainable solution to water scarcity issues in commercial buildings. By integrating condensate recovery systems, facilities can reduce their reliance on traditional water sources, contributing to broader water conservation efforts. Future research should explore the long-term viability and scalability of such systems in various building types and climates.

Page 1 of 1 | Total Record : 6