Claim Missing Document
Check
Articles

Properties and Performance of Gas Diffusion Layer PEMFC Derived from Coconut Coir Destyorini, Fredina; Irmawati, Yuyun; Widodo, Henry; Khaerudini, Deni Shidqi; Indayaningsih, Nanik
Journal of Engineering and Technological Sciences Vol 50, No 3 (2018)
Publisher : ITB Journal Publisher, LPPM ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (398.871 KB) | DOI: 10.5614/j.eng.technol.sci.2018.50.3.7

Abstract

In this work, carbon composite papers (CCP) were successfully produced by mixing 80 wt% carbon derived from coconut coir and 20 wt% binder (ethylene vinyl acetate and polyethylene glycol). The CCPs were prepared with two different forms of carbon material, i.e. powder (particle size: ± 74 µm) and fiber (length: ± 2 mm, diameter: 100-500 µm). Two types of papers were developed based on their composition. The first type, called CCP-1, was made from carbon in powder form (80 wt%), while the second one, CCP-2, was based on a combination of fiber (70 wt%) and powder (10 wt%). The influence of the carbon form on CCP properties were investigated, including electrical conductivity, porosity, hydrophobicity, microstructure, and its performance as a gas diffusion layer (GDL) in a stack of proton exchange membrane fuel cell (PEMFC) system. Based on the results, CCP-1 showed a slightly better fuel cell performance than CCP-2, which was also confirmed by its lower porosity, electrical conductivity, and water contact angle. The effect of carbon composite paper’s properties, including its morphology and performance, are disscused in this paper in detail and compared with a commercially based GDL material (TGP-H-120).
SIMULATION AND EXPERIMENTAL INVESTIGATION OF WRINKLE DEFECT IN DEEP DRAWING PROCESS OF CARBON STEEL SPCC SHAPED CYLINDER FLANGE CUP Mulyanto, Bambang; Khaerudini, Deni Shidqi
SINERGI Vol 24, No 3 (2020)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/sinergi.2020.3.004

Abstract

A Sheet Metal Forming (SMF) process, especially deep drawing, is one of the manufacturing processes that commonly used in the automotive industry. Compared with casting and forging, the SMF process has several advantages, including lesser weight materials and broader variations in shape that can be made. One of the problems in the SMF process is the wrinkling phenomenon, which can cause the size and appearance defects of sheet products. The wrinkle occurs because of the mechanical properties of the material, product geometry, and blank holder force (BHF). Several variations of BHF were applied in these simulations and experiments to eliminate the wrinkle defects of cylinder flange cup test products. The characteristic of the cylinder flange cup is from the cold-rolled coiled steel plate (SPCC) type of material with a thickness of 0.8 and 1.0 mm, the height of 10 mm, the inner diameter of 58 mm, and flange diameter of 76 mm. Simple simulations of the SMF process were carried out by using Solidworks with version 2017, and the experiment was carried out at a 600 kN press with a punch velocity of 40 strokes per minute and blank holder force variations from 0 to 21 kN. The experimental data performed with a single die on a flanged cup cylindrical test material shows that the higher the blank holder force (BHF) number, the smaller the wrinkle defect, and it can be eliminated starting from the BHF number of 15 kN.
DESIGN OF ANTI-SLIP SHOES FOR 12 TON PALM OIL TRUCK WHEELS Wahyudi, Dani Tri; Khaerudini, Deni Shidqi
SINERGI Vol 24, No 3 (2020)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/sinergi.2020.3.006

Abstract

The rainy season will have a severe problem to the transportation sector (including heavy-duty trucks) in the off-road area in Indonesia, especially in areas that do not have permanent access roads (asphalt or concrete roads). For heavy vehicles, especially oil palm transport trucks will experience such obstacles, including slippage when crossing muddy dirt roads, and it will have an impact on the logistics delivery process. Therefore, it is necessary to design a support system, especially on the wheels, to reduce the risk of skidding or rolling on truck-type vehicles. In this work, the design of the anti-slip shoe wheels of the colt diesel double type truck (CDD) is used on the rear-wheel-drive as a tool for handling the slippage. In this design, the maximum traction factor of the wheels based on the calculation on the rolling resistance should be higher than 594 kg. The next step is to determine the value of soil cohesion and soil internal friction angle obtained from the previous studies. In this study, a calculation simulation was carried out to accomplish the design of the main components of the anti-slip of a truck wheel in the form of a traction rod fin. The design is namely U channel profile steel based on SNI 07-0052-2006 type U50, U65, and U80 with dimensions of the fin depth (z) are 3.8 cm, 4.2 cm, and 4.5 cm and length of 30 cm. The results show that the three types of U channel iron used for the anti-slip shoes are useful for freeing trucks from slippage with a total load of 12 tons. Thus, the truck will be safe when crossing the muddy roads with clay, muddy clay, and sandy loam under the following conditions: minimum cohesion number of 0.008 kg/cm2, minimum internal friction angle in the soil of 4.631°, and the maximum water content of 59.6%.
Desain Sepatu Antiselip untuk Roda Truk Colt Diesel di Jalan Berlumpur Dani Tri Wahyudi; Deni Shidqi Khaerudini
Jurnal Teknik Mesin Vol 13 No 1 (2020): Jurnal Teknik Mesin
Publisher : Politeknik Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/jtm.13.1.278

Abstract

The rains will make a serious problem for the transportation sector in Indonesia, especially in areas that do not have permanent access roads (asphalt or concrete roads). Heavy vehicles such as oil palm trucks will go into the skid when crossing muddy dirt roads, and it makes an impact on the logistics delivery process. It is necessary for designing a support system, especially on the part of the wheel, to reduce the risk of skidding or rolling. Anti-slip shoe wheels of the colt diesel double (CDD) type truck is used on the rear-wheel-drive as a tool for handling slippage. Calculations and corrections are performed for maximum traction of the ground rolling resistance at ≥ 396 kg. Furthermore, the value of soil cohesion and soil shear angle was determined from the previous studies. In this study, a calculation simulation was carried out to obtain the design of the main components of an antislip wheel of a truck, which is in the form of a traction rod fin using steel UNP SNI 07-0052-2006 with a fin depth of 4.5 cm and a length of 20 cm. These dimensions are effective enough to increase the truck wheel traction of 8 tons when used to cross muddy roads with a maximum water content of 59.6% and a minimum cohesion value of land (C) of 0.108 kg/cm2
Properties and Performance of Gas Diffusion Layer PEMFC Derived from Coconut Coir Fredina Destyorini; Yuyun Irmawati; Henry Widodo; Deni Shidqi Khaerudini; Nanik Indayaningsih
Journal of Engineering and Technological Sciences Vol. 50 No. 3 (2018)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2018.50.3.7

Abstract

In this work, carbon composite papers (CCP) were successfully produced by mixing 80 wt% carbon derived from coconut coir and 20 wt% binder (ethylene vinyl acetate and polyethylene glycol). The CCPs were prepared with two different forms of carbon material, i.e. powder (particle size: ± 74 µm) and fiber (length: ± 2 mm, diameter: 100-500 µm). Two types of papers were developed based on their composition. The first type, called CCP-1, was made from carbon in powder form (80 wt%), while the second one, CCP-2, was based on a combination of fiber (70 wt%) and powder (10 wt%). The influence of the carbon form on CCP properties were investigated, including electrical conductivity, porosity, hydrophobicity, microstructure, and its performance as a gas diffusion layer (GDL) in a stack of proton exchange membrane fuel cell (PEMFC) system. Based on the results, CCP-1 showed a slightly better fuel cell performance than CCP-2, which was also confirmed by its lower porosity, electrical conductivity, and water contact angle. The effect of carbon composite paper's properties, including its morphology and performance, are disscused in this paper in detail and compared with a commercially based GDL material (TGP-H-120).
Effect of Dissolution Temperature on Purity of LaNi5 Powder Synthesized with the Combustion-Reduction Method Ade Utami Hapsari; Retna Deca Pravitasari; Hanif Yuliani; Damisih Damisih; Deni Shidqi Khaerudini; Aghni Ulma Saudi; Jarot Raharjo
Journal of Engineering and Technological Sciences Vol. 53 No. 5 (2021)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2021.53.5.12

Abstract

The LaNi5 intermetallic phase has been extensively investigated because of its excellent properties, such as attractive hydrogen storage, medium plateau pressure, and easy activation. LaNi5 phase is generally produced by a complicated method, which involves several steps, i.e. melting, alloying, casting, softening and making them into powder. This study aimed to develop a new LaNi5 synthesis process by modifying the combustion-reduction method. In this method it is very important to produce La2NiO4, because LaNi5 is formed from the process of reducing this phase. The precursor powders La(NO3)3.6H2O and Ni(NO3)2.6H2O were reacted with distilled water as a solvent medium and mixed using magnetic stirring. The synthesis process was carried out at room temperature, 60 °C, 70 °C, and 80 °C for 10 minutes until the solution became transparent green. The solution was then dried for 2 hours at 100 °C to form a transparent green gel. The gel was calcined at a temperature of 500 °C for 2 hours, producing a black powder. The optimal black powder was then reduced using CO gas at 600 °C for 2 hours. The powder samples were characterized using XRD, FTIR, and SEM-EDX. The analysis revealed that synthesis at room temperature was the most optimal method for the reduction process because it produced the most La2NiO4, at 12.135 wt%.
Efek Aditif 3Al2O3.2SiO2 dan Suhu Sintering terhadap Karakteristik Keramik -Al2O3 Perdamean Sebayang; Anggito Pringgo Tetuko; Deni Shidqi Khaerudini; Muljadi Muljadi; Masno Ginting
Jurnal Fisika dan Aplikasinya Vol 3, No 2 (2007)
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (640.543 KB) | DOI: 10.12962/j24604682.v3i2.977

Abstract

Telah dilbuat keramik corundum (-Al2O3) menggunakan serbuk Al2O3 dan masing-masing ditambah: 10, 15, 20 dan 25% (berat) 3Al2O3.2SiO2, digiling 24 jam, lolos ayakan 200 mesh, dikeringkan 110C, dicetak 50 Mpa, dan disintering pada suhu: 1300, 1400, 1500 dan 1600C. Sebesar 20% aditif 3Al2O3.2SiO2 dan suhu sintering 1600C merupakan kondisi optimum, menghasilkan: densitas = 3,47 g/cm3, porositas = 0,64%, kekerasan (Hv) = 1454 kgf/mm2, kuat patah = 313 MPa, dan koesien ekspansi termal = 6,3 x 10−6 C−1.Corundum (-Al2O3) merupakan fasa dominan, partikelnya bulat, grain size: 0,3-0,8 μm dan minornya adalah mullite (Al2O3.2SiO2), berbentuk jarum, dan grain size: 0,3-3,0 μm.
Pengaruh Variasi Sludge-serbuk Kayu sebagai Penguat terhadap Sifat Mekanik Material Komposit Matriks Urea-Formaldehida Deni Shidqi Khaerudini; Muljadi Muljadi
Jurnal Fisika dan Aplikasinya Vol 3, No 1 (2007)
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (464.593 KB) | DOI: 10.12962/j24604682.v3i1.968

Abstract

Material komposit papan partikel dibuat dari penguat berbasis lignoselulosa dan matriks resin ureaformaldehida. Pembuatan dilakukan dengan mencampur sludge, partikel kayu, dan matriks. Variabel komposisi berat kedua jenis penguat (sludge-partikel kayu), yaitu: 60:40, 70:30, dan 80:20, untuk komposisi matriks yaitu 8%, 10%, dan 12% berat komposit. Setelah komposisi dicampur target kerapatan adalah 0,6 g/cm3. Pembuatan dilakukan dengan metode mat-forming dengan ukuran cetakan 30 cm x 30 cm. Kemudian dilakukan Hot-Press 15 kgf/cm2, suhu 150C, selama 15-25 menit. Selanjutnya komposit diuji mekanik berupa uji elastisitas dan kuat patah mengacu standar JIS.A.5908-94 dan JIS.A.5905-94. Nilai densitas 0,56-0,70 g/cm3, elastisitas 6213-12978 kgf/cm2, dan kuat patah 52-108 kgf/cm2.
PENGARUH PENAMBAHAN IRON MILL-SCALE DAN TEMBAGA SEBAGAI MATERIAL PELAT BIPOLAR Nisya Ulmiah; Fitri Suryani Arsyad; Deni Shidqi Khaerudini
Jurnal Teknosains Vol 7, No 2 (2018): June
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/teknosains.36576

Abstract

Bipolar plate is an important component of proton exchange membrane fuel cell (PEMFC), which provides fuel and oxidant to reactive sites, collect produced current, and mechanical support for the cell in the stacks. This study concerns to find the optimum composition and sintering temperature of iron mills-cale in matrix aluminium as bipolar plate material. This work firstly carried out by downsizing aluminium flake from scrap into powder using high energy milling for 120 min and treated the iron mill-scale at 300 and 1000 oC for 60 min. The waste aluminium powder, after sieving of 150 mesh, was mixing with iron mill-scale containing 30 to 50 vol.% using shaker mill for 10 min. The mixed powders were then pressed 300 MPa and sintered with temperature of 500-600 oC for 60 min and flowed with N2 gas. The structural changes, physical, and mechanical properties of the sintered sample were studied by optical micrograph, density, porosity, hardness Vickers, and electrical conductivity test. The result showed that the optimum composition Fe is 40 vol. % and sinter temperature is 550 oC. Conductivity value of 45.406 S/cm and hardness 183.96 HV hasn’t meet expectation. Cu added containing 4-10 vol. % Fe aims to improve physical properties composites as bipolar plate material PEMFC. The result showed Cu 4 vol. % Fe can increase conductivity value 64.481 S/cm and hardness 340.13 HV.
DESIGN OF ANTI-SLIP SHOES FOR 12 TON PALM OIL TRUCK WHEELS Dani Tri Wahyudi; Deni Shidqi Khaerudini
SINERGI Vol 24, No 3 (2020)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/sinergi.2020.3.006

Abstract

The rainy season will have a severe problem to the transportation sector (including heavy-duty trucks) in the off-road area in Indonesia, especially in areas that do not have permanent access roads (asphalt or concrete roads). For heavy vehicles, especially oil palm transport trucks will experience such obstacles, including slippage when crossing muddy dirt roads, and it will have an impact on the logistics delivery process. Therefore, it is necessary to design a support system, especially on the wheels, to reduce the risk of skidding or rolling on truck-type vehicles. In this work, the design of the anti-slip shoe wheels of the colt diesel double type truck (CDD) is used on the rear-wheel-drive as a tool for handling the slippage. In this design, the maximum traction factor of the wheels based on the calculation on the rolling resistance should be higher than 594 kg. The next step is to determine the value of soil cohesion and soil internal friction angle obtained from the previous studies. In this study, a calculation simulation was carried out to accomplish the design of the main components of the anti-slip of a truck wheel in the form of a traction rod fin. The design is namely U channel profile steel based on SNI 07-0052-2006 type U50, U65, and U80 with dimensions of the fin depth (z) are 3.8 cm, 4.2 cm, and 4.5 cm and length of 30 cm. The results show that the three types of U channel iron used for the anti-slip shoes are useful for freeing trucks from slippage with a total load of 12 tons. Thus, the truck will be safe when crossing the muddy roads with clay, muddy clay, and sandy loam under the following conditions: minimum cohesion number of 0.008 kg/cm2, minimum internal friction angle in the soil of 4.631°, and the maximum water content of 59.6%.
Co-Authors Abdul Hamid Budiman Abdul Hamid Budiman Abdulloh Rifai Abu Bakar, Afarulrazi Ade Utami Hapsari Ade Utami Hapsari Adnan, Farrah Anis Fazliatun Afarulrazi Abu Bakar Aghni Ulma Saudi Aghni Ulma Saudi Agustanhakri Agustanhakri Aiman Sajidah Abd Aziz Akhiruddin Maddu Ana Nur Octaviani Andhika Prima Prasetyo Andi Firdaus Sudarma Andri Hardiansyah Anggito Pringgo Tetuko Annisa Azzahra Arif Tjahjono Arif Tjahjono Arif Tjahjono Azizi, Muhammad Bambang Mulyanto Bambang Mulyanto Chollacoop, Nuwong Dafit Feriyanto Damisih Damisih Damisih Damisih Damsyik, Akhmad Dani Tri Wahyudi Dani Tri Wahyudi Desi Fajarwati Destyorini, Fredina Dita Adi Saputra Djajadiwinata, Eldwin Dwi Pudjisusilo, Raden Edy Herianto Majlan F. Adany Fajar Arif Kurniawan Fania, Adhista Faozan Ahmad Fira Rizky Fitri Suryani Arsyad Fredina Destyorini Galih Taqwatomo Gea, Markus Gerald Ensang Timuda Gerald Ensang Timuda Ginting, Dianta H. Hardhienata Hanif Yuliani Hanif Yuliani Henry Widodo Ilham Nur Dimas Yahya Indayaningsih, Nanik Indri Susanti Indriyati Indriyati Iqbal, Rendy Muhamad Irmawati, Yuyun Isnaeni Isnaeni Jarot Raharjo Jarot Raharjo Kurniawan Kurniawan Lukman Faris Nurdiyansah Marcelinus Christwardana Mardiyati, Mardiyati Masno Ginting Mas’ud Asadullah Muhamad Fitri Muhammad Dikdik Gumelar Muljadi Muljadi Muljadi Muljadi Nada Hashida Lathifah Nanik Indayaningsih Nisya Ulmiah Nofrijon Sofyan, Nofrijon Nono Darsono Nono Darsono Nono Darsono, Nono Nuwong Chollacoop Oka Pradipta Arjasa Oka Pradipta Arjasa Oktaviani, Ana Nur Pandriana, Aap Perdamean Sebayang Permono Adi Putro Pratama, Wisnu Pudjiwati, Sri Retna Deca Pravitasari Retna Deca Pravitasari Retno Agnestisia Riandy Putra Riesma Tasomara Rike Yudianti Robi Suherman Sabilly Handi Pradana Saddam Husin Safaat, Mukhtar Sagir Alva Sanusi, Yasa Saptari, Sitti Ahmiatri Simanjutak, Elfrida Roulina Simarmata, Sari Namarito Sinaga, Tiara Cristy Sinaga, Tiara Cristy Agatha Slamet Priyono Sri Rahayu Sudarma, Andi Firdaus Susilo, R Dwi Pudji Tarigan, Kontan Teguh Imam Prasetya Tommy Martin Syauta Triyanto Pangaribowo Vivi Friliandita Vivi Friliandita Wahyu Mulyo Utomo Wahyu Mulyo Utomo Wahyu Tri Utami Wahyudi, Dani Tri Widodo, Aditya Putra Widodo, Henry Wulandari, Ika Octavia Yunata Mandala Putra Yurian Ariandi Andrameda Yuyun Irmawati Yuyun Irmawati