cover
Contact Name
H Hadiyanto
Contact Email
hadiyanto@che.undip.ac.id
Phone
-
Journal Mail Official
ijred@live.undip.ac.id
Editorial Address
CBIORE office, Jl. Prof. Soedarto, SH-Tembalang Semarang
Location
Kota semarang,
Jawa tengah
INDONESIA
International Journal of Renewable Energy Development
ISSN : 22524940     EISSN : 27164519     DOI : https://doi.org/10.61435/ijred.xxx.xxx
The International Journal of Renewable Energy Development - (Int. J. Renew. Energy Dev.; p-ISSN: 2252-4940; e-ISSN:2716-4519) is an open access and peer-reviewed journal co-published by Center of Biomass and Renewable Energy (CBIORE) that aims to promote renewable energy researches and developments, and it provides a link between scientists, engineers, economist, societies and other practitioners. International Journal of Renewable Energy Development is currently being indexed in Scopus database and has a listing and ranking in the SJR (SCImago Journal and Country Rank), ESCI (Clarivate Analytics), CNKI Scholar as well as accredited in SINTA 1 (First grade category journal) by The Directorate General of Higher Education, The Ministry of Education, Culture, Research and Technology, The Republic of Indonesia under a decree No 200/M/KPT/2020. The scope of journal encompasses: Photovoltaic technology, Solar thermal applications, Biomass and Bioenergy, Wind energy technology, Material science and technology, Low energy architecture, Geothermal energy, Wave and tidal energy, Hydro power, Hydrogen production technology, Energy policy, Socio-economic on energy, Energy efficiency, planning and management, Life cycle assessment. The journal also welcomes papers on other related topics provided that such topics are within the context of the broader multi-disciplinary scope of developments of renewable energy.
Articles 709 Documents
Optimization of Monochloroacetic Acid Biodegradation by Recombinant E. coli BL21 (DE3)/pET-bcfd1 Carrying Haloacid Dehalogenase Gene from Bacillus cereus IndB1 Enny Ratnaningsih; Rachmad Ade; Rindia Maharani Putri; Idris Idris
International Journal of Renewable Energy Development Vol 10, No 4 (2021): November 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2021.38887

Abstract

In recent years, attention to microbial dehalogenase has continually increased due to its potential application, both in bioremediation and in the biosynthesis of fine chemicals. Many microbial recombinant strains carrying dehalogenase gene have been developed, particularly to increase the dehalogenase production and its quality. In this study, we aimed to find the optimum condition for the production of active haloacid dehalogenase by E. coli BL21 (DE3) harboring recombinant plasmid pET-bcfd1 that carried haloacid dehalogenase gene from Bacillus cereus IndB1 local strain. This would be examined by assessing the ability of whole cell life culture to degrade monochloroacetic acid (MCA) and quantifying the chloride ion released into the medium. Several variables were evaluated to find this optimal condition. We found that the best condition for MCA biodegradation using this recombinant clone was at 0.2 mM MCA, 10 μM of isopropyl β-D-1-thiogalactopyranoside (IPTG), 6 hours of pre-induction incubation at 37ºC with shaking, 2 hours IPTG induction at 30ºC with shaking, at pH 7 in Luria Bertani (LB) liquid medium without NaCl, which produced about 0.056 mM chloride ions. Inducer concentration, pre-induction incubation time and temperature, as well as induction time and temperature were apparent to be associated with the expression of the protein, while the MCA concentration and the pH of the medium influenced the ability of the recombinant E. coli BL21 (DE3)/pET-bcfd1 to grow in toxic environment. Our findings laid the foundation for exploration of dehalogenases from local Bacillus strains through genetic engineering for MCA biodegradation
Effects on NOx and SO2 Emissions during Co-Firing of Coal With Woody Biomass in Air Staging and Reburning Nihad Hodžić; Sadjit Metović; Anes Kazagic
International Journal of Renewable Energy Development Vol 7, No 1 (2018): February 2018
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.7.1.1-6

Abstract

Co-firing coal with different types of biomass is increasingly being applied in thermal power plants in Europe. The main motive for the use of biomass as the second fuel in coal-fired power plants is the reduction of CO2 emissions, and related financial benefits in accordance with the relevant international regulations and agreements. Likewise, the application of primary measures in the combustion chamber, which also includes air staging and/or reburning, results in a significant reduction in emission of polluting components of flue gases, in particular NOx emissions. In addition to being efficient and their application to new and future thermoblocks is practically unavoidable, their application and existing conventional combustion chamber does not require significant constructional interventions and is therefore relatively inexpensive. In this work results of experimental research of co-firing coals from Middle Bosnian basin with waste woody biomass are presented. Previously formed fuel test matrix is subjected to pulverized combustion under various temperatures and various technical and technological conditions. First of all it refers to the different mass ratio of fuel components in the mixture, the overall coefficient of excess air and to the application of air staging and/or reburning. Analysis of the emissions of components of the flue gases are presented and discussed. The impact of fuel composition and process temperature on the values of the emissions of components of the flue gas is determined. Additionally, it is shown that other primary measures in the combustion chamber are resulting in more or less positive effects in terms of reducing emissions of certain components of the flue gases into the environment. Thus, for example, the emission of NOx of 989 mg/ measured in conventional combustion, with the simultaneous application of air staging and reburning is reduced to 782 mg/, or by about 21%. The effects of the primary measures applied in the combustion chamber are compared and quantified with regard to conventional combustion of coals from Middle Bosnian basin.Article History: Received: November 5th 2017; Revised: Januari 6th 2018; Accepted: February 1st 2018; Available onlineHow to Cite This Article: Hodžić, N., Kazagić, A., and Metović, S. (2018) Experimental Investigation of Co-Firing of Coal with Woody Biomass in Air Staging and Reburning. International Journal of Renewable Energy Development, 7(1), 1-6.https://doi.org/10.14710/ijred.7.1.1-6 
Optimization of Aeration for Accelerating Municipal Solid Waste Biodrying Panida Payomthip; Sirintornthep Towprayoon; Chart Chiemchaisri; Suthum Patumsawad; Komsilp Wangyao
International Journal of Renewable Energy Development Vol 11, No 3 (2022): August 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.45143

Abstract

Biodrying technology is commonly used in Thailand to produce refuse-derived fuel (RDF), however, this technology remains ineffective on high-moisture waste. Air supply is key to ensuring homogenous temperature development within the waste matrix during biodrying, increasing RDF quality. This study investigated negative aeration during local municipal solid waste biodrying to meet RDF standards in reduced time. Lysimeter experiments were performed on pre-shredded waste (300 kg/m3) using different aeration patterns. The temperature, vent gas oxygen level, weight loss, and leachate volume during the biodrying process were monitored. In addition, the treated waste’s temperature, moisture, and heating values were evaluated to determine the biodrying process efficiency. The results indicate that shorter heating phases can be achieved during continuous aeration. No significant temperature variation was observed in the waste layers, with a low standard deviation of 1.96% during constant air supply, indicating homogeneous temperature development during the biodrying process. The vent gas contained 15–20% oxygen and non-detectable methane, evidencing sufficient air supply. The total heat development was independent of aeration pattern; therefore, biodrying was unaffected by excess air supply at a 95% confidence level. The highest weight loss and moisture content reduction were 25% and 66%, respectively. The optimal aeration was continuous mode with non-excessive aeration, increasing the lower heating value from 2,884.0 to 4,938.0 kCal/kg, and reducing the moisture content from 48.5% to 22.2%. RDF quality can be improved 1.7 times to meet Thailand’s standards within a short biodrying period of 7 days using homogeneous temperature distribution operated under continuous aeration
Optimizing the Synthesis of Lignin Derivatives from Acacia mangium to Improve the Enzymatic Hydrolysis of Kraft Pulp Sorghum Bagasse Widya Fatriasari; Fajar Nur Hamzah; Bagas Ikhasan Pratomo; Triyani Fajriutami; Riksfardini Annisa Ermawar; Faizatul Falah; Raden Permana Budi Laksana; Muhammad Ghozali; Apri Heri Iswanto; Euis Hermiati; Ina Winarni
International Journal of Renewable Energy Development Vol 9, No 2 (2020): July 2020
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.9.2.227-235

Abstract

The present study is aimed at optimizing the synthesis of Amphipilic lignin derivatives (A-LD) from the isolated lignin of A.mangium black liquor (BL), using the one and two step acid isolation method, and commercial lignin (LS) was used as comparison. The experimental design was conducted using Taguchi method, which consisted of four parameters and two level factors, with reference to the matrix orthogonal array, L8, including temperature, reaction time, amount of polyethylene glycol diglycidylethers (PEGDE) and Kraft lignin (KL). Furthermore, the kraft pulp of sweet sorghum bagasse (SSB) was used as substrate in the enzymatic hydrolysis (NREL method), with addition of A-LD, whose functional group and surface tension were then characterised using ATR-FTIR and surface tension equipment. Conversely, an improvement in the reducing sugar yield (RSY) compared to the control was observed after adding various A-LDs to the substrate during enzymatic hydrolysis. This product was more prospective for L2S than others products under milder circumstances, due to the fact that it possesses the lowest surface tension. Also, Taguchi analysis demonstrated the treatment at 60 °C for 1 h with 3.0 g and 1.0 g of PEDGE and lignin, respectively as the optimum condition, while the amount of lignin present was included as a factor with the propensity to significantly affect A-LD L1S and LS. Therefore, it was established that the A-LDs from A. mangium kraft lignin require milder synthesis conditions, compared to other existing methods and despite the differences in optimum experimental condition for L2S and LS, the functional groups in the IR spectra possessed very identical characteristics. 
Performance and Emission Characteristics of Diesel Engine Using Ether Additives: A Review Quoc Bao Doan; Xuan Phuong Nguyen; Van Viet Pham; Thi Minh Hao Dong; Minh Tuan Pham; Tan Sang Le
International Journal of Renewable Energy Development Vol 11, No 1 (2022): February 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.42522

Abstract

Pressure on alternative fuels and strict environmental regulations are driving a strategic shift in the efficient use of renewable biofuels. One of the promising biofuel candidates recently interested by scholars is a biological or organic additive that is added into diesel or biodiesel fuel to improve engine performance and reduce pollutant emissions. With efforts to improve efficiency and combustion quality in cylinders, combustion characteristics, flame structure and emission formation mechanism in compression ignition (CI) engines using blended fuel with organic additives have been studied on the effect of additive properties on the combustion behaviour. In this review, the physicochemical properties of typical organic additives such as ethers compounds and their effects on engine performance and emission characteristics have been discussed and evaluated based on conclusions of recent relevant literature. The results of the analysis revealed the prospect of using ether additives to improve combustion in cylinders and reduce pollutant emissions from CI engines. Obviously, the presence of higher oxygen content, lower viscosity and density, and higher cetane number resulted in a positive change in the combustion dynamics as well as a chain of mechanisms for the formation of pollutant precursors in the cylinder. Therefore, ether additives have a significant contribution to the sustainable energy strategy of the transportation sector in the next period when internal combustion engines still dominate in the competition for energy system choices equipped on vehicles.
Prosopis juliflora pods mash for biofuel energy production: Implication for managing invasive species through utilization Mebrahtu Haile; Hadgu Hishe; Desta Gebremedhin
International Journal of Renewable Energy Development Vol 7, No 3 (2018): October 2018
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.7.3.205-212

Abstract

Fuels obtained from renewable resources have merited a lot of enthusiasm amid the previous decades mostly because of worries about fossil fuel depletion and climate change. The aim of this study was to investigate the potential of Prosopis juliflora pods mash for bio-ethanol production and its hydrolysis solid waste for solid fuel. Parameters such as acid concentration (0.5 - 3 molar), hydrolysis times (5-30 min), fermentation times (6-72h), fermentation temperature (25 OC - 40 OC) and pH (4-8) on bio-ethanol production using Saccharomyces cerevisiae yeast were evaluated. Results show that the content of sugar increases as the acid concentration (H2SO4) increased up to 1 molar and decreases beyond 1 molar.  A maximum sugar content of 96.13 %v/v was obtained at 1 molar of H2SO4 concentration. The optimum conditions for bio-ethanol production were found at 1 molar of H2SO4 concentration (4.2 %v/v), 48 h fermentation time (5.1%v/v), 20 min hydrolysis time (5.57 %v/v), 30 OC fermentation temperature (5.57 %v/v) and pH 5 (6.01 %v/v). Under these optimum conditions, the maximum yield of bio-ethanol (6.01%v/v) was obtained. Furthermore, the solid waste remaining after bio-ethanol production was evaluated for solid fuel application (18.22 MJ/kg). Hence, the results show that Prosopis juliflora pods mash has the potential to produce bio-ethanol. The preliminary analysis of solid waste after hydrolysis suggests the possibility to use it as a solid fuel, implying its potential for alleviating major disposal problems.Article History: Received March 24th 2018 ; Received in revised form September 15th 2018; Accepted October 1st 2018; Available onlineHow to Cite This Article: Haile, M., Hishe, H. and Gebremedhin, D. (2018) Prosopis juliflora Pods Mash for Biofuel Energy Production: Implication for Managing Invasive Species through Utilization. International Journal of Renewable Energy Development, 7(3), 205-212.https://doi.org/10.14710/ijred.7.3.205-212 
Thermal Performance of Double Pass Solar Air Heater With Tubular Solar Absorber Nassr Fadhil Hussein; Sabah T Ahmed; Ali L Ekaid
International Journal of Renewable Energy Development Vol 12, No 1 (2023): January 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.46328

Abstract

In this investigation, the effect of replacing the conventional solar absorber with a new solar absorber on the thermal performance of a double-pass solar air heater has been studied experimentally and numerically.  Three configurations have been introduced, the first configuration is a double pass solar air heater with a flat plate solar absorber (DPSAHWFP) for the aim of comparison, and the second configuration is a double pass solar air heater with a tubular absorber that includes a set of tubes which are fitted perpendicularly to the direction of airflow (DPSAHWT-1),  and the third configuration is double-pass solar air heater with a tubular absorber that involves set of tubes which are fitted in parallel to the direction of airflow (DPSAHWT-2). The experiments have been carried out under indoor conditions at a constant heat flux equal to 1000 W/m2 and different air mass flow rates (0.01– 0.03 kg/s). The results revealed that the air mass flow rate has a substantial impact compared to the rise in air temperature, hence, the thermal performance of solar air heater is directly proportional to increase air mass flow rate. In addition, the experimental and numerical outcomes indicated that for all air flow rates. The (DPSAHWT-2) offers higher thermal performance as compared to other models, where the maximum effective efficiency has been obtained at 0.03 kg/s equal to 80.9 %. Moreover, (DPSAHWT-2) is more efficient than DPSAHWFP and DPSAHWT-1 by 4.2 % and 9.8 % respectively.
Composition Assessment of a Power Distribution System with Optimal Dispatching of Distributed Generation Muhammad Afzal; Manuel S. Alvarez-Alvarado; Zafar A. Khan; Mohammed Alghassab
International Journal of Renewable Energy Development Vol 9, No 3 (2020): October 2020
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2020.31428

Abstract

Increasing penetration of distributed generation (DG) is imminent in the new age of power distribution networks, which are smarter than the conventional grids. They enable the integration of DG into the power distribution network. This paper presents an assessment methodology for determining the optimal capacity and location of DG to ensure high reliability in a radial distribution network. The approach considers cost and the impact of aging on the DG and network topology for interconnection using genetic algorithm, which is a robust technique with wide solution space searchability and can potentially find global optima with fewer chances of getting trapped into local optima. A case study is simulated using three different scenarios to evaluate the impact of DG interconnection on the 13.8 kV power distribution network. The scenarios comprise of situations without any DG, with DG interconnection and optimization of DG interconnection. The case study shows that the penetration of DG increases the reliability of the distribution network while reducing the expected energy not supplied (EENS). Although, the difference between EENS in the optimized DG integration and non-optimized DG integration is not very significant in a small network, however, it becomes apparent with the aging curve that optimized allocation of DG possesses significant benefits.
Effect of the non-uniform combustion core shape on the biochar production characteristics of the household biomass gasifier stove Chaiyalap, Somchet; Chai-ngam, Ritthikrai; Saengprajak, Juthaporn; Piamdee, Jenjira; Putkham, Apipong; Saengprajak, Arnusorn
International Journal of Renewable Energy Development Vol 12, No 6 (2023): November 2023
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.56575

Abstract

The global demand for biochar in agricultural and carbon sequestration applications is increasing; nevertheless, biochar production using the 50-liter household biomass gasifier stove (50L-HBGS) in Thailand found major issues that need to be improved. The objective of this study was to study the effects of the airflow in the non-uniform combustion core shape (NCCS) on the biochar production characteristic of the 50L-HBGS. The new design of the NCCS was constructed and studied to replace the existing combustion core shape (ECCS) at Mahasarakham University. The height, air inlet, and air outlet diameters of the NCCS were designed at 45, 24, and 11.4 cm, respectively. The NCCS with 21 holes of the pyrolysis gas outlet, a diameter of 4 mm for each, was integrated into the 50L-HBGS and performed comparative tests to the ECCS using 9 kg of bamboo wood chunks in three consecutive experiments. The airflow and the combustion behavior were studied through the stove temperature profiles, which were recorded every 5 minutes using a digital data logger. The biochar products were studied using the scanning electron microscope (SEM) with the energy dispersive x-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), and the proximate analysis technique. The study indicated that the 50L-HBGS with the NCCS made significantly improved the airflow rates in the combustion core, resulting in better continuous burning during the ignition state than with the ECCS. Moreover, the pyrolysis temperatures were significantly improved, it was provided temperatures during the pyrolysis process reached higher than 500 oC, resulting in the liquid tar being removed and no unburned wood chunks remaining at the end. The characterization result demonstrated that the 50L-HBGS with the NCCS had created biochar within a range of micropore and macrospore sizes and high fixed carbon content, which could be advantageously used for different agricultural and carbon sequestration applications.
Impact of Accumulated Dust on Performance of Two Types of Photovoltaic Cells: Evidence from the South of Jordan Abdullah Marashli; Ghadeer Nyazi Al Shaba'an; Waed Al-Twaissi; Mohammad Shalby; Hani Al-Rawashdeh
International Journal of Renewable Energy Development Vol 11, No 2 (2022): May 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.42625

Abstract

This paper examines the impact of accumulated dust on two types of photovoltaic (PV) cells in the performance of solar panels facility located in the southern part of Jordan between January to August 2020.  To determine the performance of the solar PV panel system, two elements have been considered: sun radiation total efficiency and output power generated from the two types of the PV panel. Results of the study revealed that the mass of dust accumulated on the polycrystalline panel accumulated faster than on the cadmium telluride panel at a rate of 10.5 g/m2 for polycrystalline panels and 8.4g/m2 for cadmium telluride panel. Furthermore, results indicated that the projected drop in the efficiency of washed and unwashed polycrystalline panels decreased monthly by 5% and 16% respectively, while the efficiency of washed and unwashed cadmium telluride panels decreased monthly by 5% and 11.5% respectively. In the same context, results indicated that the wind speed, concentration rate, and relative humidity increased by 3%, 5%, and 8% respectively whereas the ambient temperature decreased by 4% monthly. On the other hand, the size and charge of accumulated dust on the cadmium telluride panel surface were larger than the size and charge of dust on the polycrystalline panel surface with a high percent of (Si) and low percent of (Ca) and (Fe). This research contributes to the literature by providing empirical evidence for the impact of accumulated dust on PV panels applied on a dusty-weather such as the one in the southern part of Jordan.

Page 8 of 71 | Total Record : 709


Filter by Year

2012 2026


Filter By Issues
All Issue Vol 15, No 2 (2026): March 2026 Vol 15, No 1 (2026): January 2026 Vol 14, No 6 (2025): November 2025 Vol 14, No 5 (2025): September 2025 Vol 14, No 4 (2025): July 2025 Vol 14, No 3 (2025): May 2025 Vol 14, No 2 (2025): March 2025 Vol 14, No 1 (2025): January 2025 Accepted Articles Vol 13, No 6 (2024): November 2024 Vol 13, No 5 (2024): September 2024 Vol 13, No 4 (2024): July 2024 Vol 13, No 3 (2024): May 2024 Vol 13, No 2 (2024): March 2024 Vol 13, No 1 (2024): January 2024 Vol 12, No 6 (2023): November 2023 Vol 12, No 5 (2023): September 2023 Vol 12, No 4 (2023): July 2023 Vol 12, No 3 (2023): May 2023 Vol 12, No 2 (2023): March 2023 Vol 12, No 1 (2023): January 2023 Vol 11, No 4 (2022): November 2022 Vol 11, No 3 (2022): August 2022 Vol 11, No 2 (2022): May 2022 Vol 11, No 1 (2022): February 2022 Vol 10, No 4 (2021): November 2021 Vol 10, No 3 (2021): August 2021 Vol 10, No 2 (2021): May 2021 Vol 10, No 1 (2021): February 2021 Vol 9, No 3 (2020): October 2020 Vol 9, No 2 (2020): July 2020 Vol 9, No 1 (2020): February 2020 Vol 8, No 3 (2019): October 2019 Vol 8, No 2 (2019): July 2019 Vol 8, No 1 (2019): February 2019 Vol 7, No 3 (2018): October 2018 Vol 7, No 2 (2018): July 2018 Vol 7, No 1 (2018): February 2018 Vol 6, No 3 (2017): October 2017 Vol 6, No 2 (2017): July 2017 Vol 6, No 1 (2017): February 2017 Vol 5, No 3 (2016): October 2016 Vol 5, No 2 (2016): July 2016 Vol 5, No 1 (2016): February 2016 Vol 4, No 3 (2015): October 2015 Vol 4, No 2 (2015): July 2015 Vol 4, No 1 (2015): February 2015 Vol 3, No 3 (2014): October 2014 Vol 3, No 2 (2014): July 2014 Vol 3, No 1 (2014): February 2014 Vol 2, No 3 (2013): October 2013 Vol 2, No 2 (2013): July 2013 Vol 2, No 1 (2013): February 2013 Vol 1, No 3 (2012): October 2012 Vol 1, No 2 (2012): July 2012 Vol 1, No 1 (2012): February 2012 More Issue