cover
Contact Name
H Hadiyanto
Contact Email
hadiyanto@che.undip.ac.id
Phone
-
Journal Mail Official
ijred@live.undip.ac.id
Editorial Address
CBIORE office, Jl. Prof. Soedarto, SH-Tembalang Semarang
Location
Kota semarang,
Jawa tengah
INDONESIA
International Journal of Renewable Energy Development
ISSN : 22524940     EISSN : 27164519     DOI : https://doi.org/10.61435/ijred.xxx.xxx
The International Journal of Renewable Energy Development - (Int. J. Renew. Energy Dev.; p-ISSN: 2252-4940; e-ISSN:2716-4519) is an open access and peer-reviewed journal co-published by Center of Biomass and Renewable Energy (CBIORE) that aims to promote renewable energy researches and developments, and it provides a link between scientists, engineers, economist, societies and other practitioners. International Journal of Renewable Energy Development is currently being indexed in Scopus database and has a listing and ranking in the SJR (SCImago Journal and Country Rank), ESCI (Clarivate Analytics), CNKI Scholar as well as accredited in SINTA 1 (First grade category journal) by The Directorate General of Higher Education, The Ministry of Education, Culture, Research and Technology, The Republic of Indonesia under a decree No 200/M/KPT/2020. The scope of journal encompasses: Photovoltaic technology, Solar thermal applications, Biomass and Bioenergy, Wind energy technology, Material science and technology, Low energy architecture, Geothermal energy, Wave and tidal energy, Hydro power, Hydrogen production technology, Energy policy, Socio-economic on energy, Energy efficiency, planning and management, Life cycle assessment. The journal also welcomes papers on other related topics provided that such topics are within the context of the broader multi-disciplinary scope of developments of renewable energy.
Articles 709 Documents
Mathematical Modelling of Solar Photovoltaic Cell/Panel/Array based on the Physical Parameters from the Manufacturer’s Datasheet Manoharan Premkumar; Chandrasekaran Kumar; Ravichandran Sowmya
International Journal of Renewable Energy Development Vol 9, No 1 (2020): February 2020
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.9.1.7-22

Abstract

This paper discusses a modified V-I relationship for the solar photovoltaic (PV) single diode based equivalent model. The model is derived from an equivalent circuit of the PV cell. A PV cell is used to convert the solar incident light to electrical energy. The PV module is derived from the group of series connected PV cells and PV array, or PV string is formed by connecting the group of series and parallel connected PV panels. The model proposed in this paper is applicable for both series and parallel connected PV string/array systems. Initially, the V-I characteristics are derived for a single PV cell, and finally, it is extended to the PV panel and, to string/array. The solar PV cell model is derived based on five parameters model which requires the data’s from the manufacturer’s data sheet. The derived PV model is precisely forecasting the P-V characteristics, V-I characteristics, open circuit voltage, short circuit current and maximum power point (MPP) for the various temperature and solar irradiation conditions. The model in this paper forecasts the required data for both polycrystalline silicon and monocrystalline silicon panels. This PV model is suitable for the PV system of any capacity. The proposed model is simulated using Matlab/Simulink for various PV array configurations, and finally, the derived model is examined in partial shading condition under the various environmental conditions to find the optimal configuration. The PV model proposed in this paper can achieve 99.5% accuracy in producing maximum output power as similar to manufacturers datasheet.©2020. CBIORE-IJRED. All rights reserved
The feasibility of utilizing microwave-assisted pyrolysis for Albizia branches biomass conversion into biofuel productions Maha Faisal Abd; Atheer Mohammed Al-Yaqoobi
International Journal of Renewable Energy Development Vol 12, No 6 (2023): November 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.56907

Abstract

The consumption of fossil fuels has caused many challenges, including environmental and climate damage, global warming, and rising energy costs, which has prompted seeking to substitute other alternative sources. The current study explored the microwave pyrolysis of Albizia branches to assess its potential to produce all forms of fuel (solid, liquid, gas), time savings, and effective thermal heat transfer. The impact of the critical parameters on the quantity and quality of the biofuel generation, including time, power levels, biomass weight, and particle size, were investigated. The results revealed that the best bio-oil production was 76% at a power level of 450 W and 20 g of biomass. Additionally, low power levels led to enhanced biochar production, where a percentage of 70% appeared when employing a power level of 300 W. Higher power levels were used to increase the creation of gaseous fuels in all circumstances, such as in 700 W, the gas yield was 31%. The density, viscosity, acidity, HHV, GC-MS, and FTIR instruments were used to analyze the physical and chemical characteristics of the bio-oil. The GC-MS analysis showed that the bio-oil consists of aromatic compounds, ketones, aldehydes, acids, esters, alkane, alkenes and heterocyclic compounds. The most prevalent component was aromatic compounds with 12.79% and ketones with 12.15%, while the pH of the oil obtained was 5, and the HHV was 19.5 MJ/kg. The pyrolysis productions could be promising raw materials for different applications after further processing.
Performance, Emissions and Combustion Characteristics of a Single Cylinder Diesel Engine Fuelled with Blends of Jatropha Methyl Ester and Diesel Debasish Padhee; Hifjur Raheman
International Journal of Renewable Energy Development Vol 3, No 2 (2014): July 2014
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.3.2.125-131

Abstract

In order to meet the energy requirements, there has been growing interest in alternative fuels like biodiesels, ethyl alcohol, biogas, hydrogen and producer gas to provide a suitable diesel substitute for internal combustion engines. An experimental investigation was performed to study the performance, emissions and combustion characteristics of diesel engine fuelled with blends of Jatropha methyl ester and diesel. In the present work three different fuel blends of Jatropha methyl ester (B10, B20, B40 and B100) were used. The increments in load on the engine increase the brake thermal efficiency, exhaust gas temperature and lowered the brake specific fuel consumption. The biodiesel blends produce lower carbon monoxide & unburned hydrocarbon emission and higher carbon dioxide & oxides of nitrogen than neat diesel fuel. From the results it was observed that the ignition delays decreased with increase in concentration of biodiesel in biodiesel blends with diesel. The combustion characteristics of single-fuel for biodiesel and diesel have similar combustion pressure and HRR patterns at different engine loads but it was observed that the peak cylinder pressure and heat release rate were lower for biodiesel blends compared to those of diesel fuel combustion.
Comparative Analysis of Hybrid Renewable Energy Systems for Off-Grid Applications in Chad Abdelhamid Issa Hassane; Djamal Hissein Didane; Abakar Mahamat Tahir; Ruben Martin Mouangue; Jean Gaston Tamba; Jean-Marie Hauglustaine
International Journal of Renewable Energy Development Vol 11, No 1 (2022): February 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.39012

Abstract

In this study, a techno-economic feasibility analysis of hybrid renewable energy systems for four household categories in rural areas of Chad was studied based on the multi-criteria assessment technique. The problem of this study is to know the best optimal solution in the technical and economic feasibility study of the decentralized mini-grids for the rural electrification of isolated villages in Chad. The main objective of the work is to assess technically, economically and environmentally the feasibility of six scenarios of hybrid systems in five isolated sites in Chad. The performance analysis involved six scenarios of possible hybrid solutions while achieving a supply-demand balance for sustainable electrification of the remote villages, using the HOMER software. The results have shown that the optimum combination of the hybrid system was the photovoltaic/battery system with a Net Present Cost (NPC) of US $ 328,146 and it was found at Etena village. The photovoltaic/Wind/Diesel/Battery hybrid configuration was the least optimum system and it has appeared in Mandelia village. In terms of energy cost, the lowest Levelized Cost of Energy (LCOE) was estimated at US $ 0.236/kWh in a photovoltaic/Wind/Battery configuration at Koundoul site and the highest costs US $ 0.363/kWh in the photovoltaic/Battery configuration at the Linia site. It is established that hybrid solutions can be developed to make electricity available and accessible to the population of the remote rural areas in Chad. However, it is imperative that the local government must subsidize the diesel price to promote the adaptation of the abundant renewable solutions.
Effect of Hydraulic Retention Time on Biogas Production from Cow Dung in A Semi Continuous Anaerobic Digester Agus Haryanto; Sugeng Triyono; Nugroho Hargo Wicaksono
International Journal of Renewable Energy Development Vol 7, No 2 (2018): July 2018
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.7.2.93-100

Abstract

The efficiency of biogas production in semi-continuous anaerobic digester is influenced by several factors, among other is loading rate. This research aimed at determining the effect of hydraulic retention time (HRT) on the biogas yield. Experiment was conducted using lab scale self-designed anaerobic digester of 36-L capacity with substrate of a mixture of fresh cow dung and water at a ratio of 1:1. Experiment was run with substrate initial amount of 25 L and five treatment variations of HRT, namely 1.31 gVS/L/d (P1), 2.47 gVS/L/d (P2), 3.82 gVS/L/d (P3), 5.35 gVS/L/d (P4) and 6.67 gVS/L/d (P5). Digester performance including pH, temperature, and biogas yield was measured every day. After stable condition was achieved, biogas composition was analyzed using a gas chromatograph. A 10-day moving average analysis of biogas production was performed to compare biogas yield of each treatment. Results showed that digesters run quite well with average pH of 6.8-7.0 and average daily temperature 28.7-29.1. The best biogas productivity (77.32 L/kg VSremoval) was found in P1 treatment (organic loading rate of 1.31 g/L/d) with biogas yield of 7.23 L/d. With methane content of 57.23% treatment P1 also produce the highest methane yield. Biogas production showed a stable rate after the day of 44. Modified Gompertz kinetic equation is suitable to model daily biogas yield as a function of digestion time.Article History: Received March 24th 2018; Received in revised form June 2nd 2018; Accepted June 16th 2018; Available onlineHow to Cite This Article: Haryanto, A., Triyono, S., and Wicaksono, N.H. (2018) Effect of Loading Rate on Biogas Production from Cow Dung in A Semi Continuous Anaerobic Digester. Int. Journal of Renewable Energy Development, 7(2), 93-100.https://doi.org/10.14710/ijred.7.2.93-100
Numerical simulation of a novel small water turbine generator for installation in a deep-flow hydroponics system Werayoot Lahamornchaiyakul
International Journal of Renewable Energy Development Vol 13, No 1 (2024): January 2024
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2024.58247

Abstract

Hydroponics systems are crucial for providing sustainable and cost-effective choices when soils are unavailable for conventional farming. The application of water flow rates within hydroponics systems to generate electricity is another idea that can be used in the field of power generation. This paper presents the determination of the mechanical power efficiency of a novel small water turbine generator for use in a deep-flow hydroponics system (DFT). The system was designed, analysed, and calculated for the most suitable geometries of the water pipeline inlet, DFT system, main structure of the PVC Tee Pipe Fitting, and a water turbine wheel using computational fluid dynamics software. The diameter of the water turbine wheel in this research was 48 mm. A DFT hydroponic system was modelled for the purposes of this research. We conducted a numerical simulation with water flow rates of 6, 8, and 10 l/min to evaluate the turbulent kinetic energy distribution in the DFT hydroponic system. The numerical simulation employed the control volume methodology, and the k-epsilon turbulence model was applied to obtain the computational conclusions. The highest torque and power that a novel small water turbine for installation in a DFT system could generate at a maximum flow rate of 0.000167 m3/s were 0.082 N.m. and 1.9568 watts, respectively. The forces generated by the fluid's speed and pressure can then be transferred to the building process of a novel small water turbine wheel. The FEA numerical result shows that the maximum value of the total deformation at a wheel speed of 228 rpm is 7.0 x 10-5 mm. The numerical simulations used in this study could potentially be used to further develop prototypes for innovative miniature water turbines that generate commercial electricity.
Direct Ethanol Production from Breadfruit Starch (Artocarpus communis Forst.) by Engineered Simultaneous Saccharification and Fermentation (ESSF) using Microbes Consortium Iftachul Farida; Khaswar Syamsu; Mulyorini Rahayuningsih
International Journal of Renewable Energy Development Vol 4, No 1 (2015): February 2015
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.4.1.25-31

Abstract

Breadfruit (Artocarpus communis Forst.) is one of sources for ethanol production, which has high starch content (89%). Ethanol production from breadfruit starch was conducted by Simultaneous Saccharification and Fermentation (SSF) technology using microbes consortium. The aim of the research was to examine a method to produce ethanol by SSF technology using microbes consortium at high yield and efficiency. The main research consisted of two treatments, namely normal SSF and enginereed SSF. The results showed that normal SSF using aeration and agitation during cultivation could produce ethanol at 11.15 ± 0.18 g/L, with the yield of product (Yp/s) 0.34 g ethanol/g substrate; and yield of biomass (Yx/s) 0.29 g cell/g substrate, respectively. A better result was obtained using engineered SSF in which aeration was stopped after biomass condition has reached the end of the exponential phase. The ethanol produced was 12.75 ± 0.04 g/L, with the yields of product (Yp/s) 0.41 g ethanol/g substrate, and the yield of cell (Yx/s) 0.09 g cell/g substrate.
Mathematical Model of the Thermal Performance of Double-Pass Solar Collector for Solar Energy Application in Sierra Leone Abu Bakarr Momodu Bangura; Ridho Hantoro; Ahmad Fudholi; Pierre Damien Uwitije
International Journal of Renewable Energy Development Vol 11, No 2 (2022): May 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.41349

Abstract

The primary aim of this study was to utilize thermal energy for drying applications on March 21 (day of the year, n = 80) for the climatic weather conditions of Freetown, Sierra Leone. We evaluated the heat absorption of a double-pass solar air collector based on its configuration and exterior input variables before it was designed and mounted at the location of interest. This study considered a steady-state heat transfer using the thermal network procedure for thermodynamic modeling of a double-pass solar collector developed for drying and heating purposes. A mathematical model defining the thermophysical collector properties and many heat transfer coefficients is formed and numerically solved for this purpose. Indeed, this helped us generate the hourly temperature of different heat collector components, which aided in the performance evaluation of the system. The impact of the fluid flowing inside the collector on the temperature of the exit air was analyzed. It was observed that a flow rate of 0.02 kg/s produced an output of 91.72°C. The system's thermal efficiency improves with increased flow rate at various solar radiation intensities. It was observed that the thermal efficiency of the collector increases from 29% to 67% at flow rates of 0.01–0.3 kg/s. Collector lengths of 1.4 and 2.4 m are observed to be economically viable. An increase in the flow rate caused an increase on the efficiency. The hourly outputs for the collector components were represented graphically, and the curve patterns were similar to those of previous studies.
Thermal Characteristics of Coconut Shells as Boiler Fuel Muhamad Yulianto; Edy Hartulistiyoso; Leopold Oscar Nelwan; Sri Endah Agustina; Chandra Gupta
International Journal of Renewable Energy Development Vol 12, No 2 (2023): March 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.48349

Abstract

Agricultural waste products, such as wood, rice husk, corn waste, and coconut shells, are abundantly available  and can potentially be used as an energy source, particularly  for direct combustion in boilers. Because coconut production increases every year, it would be useful to find an alternative use for coconut shells, which are a type of coconut waste. As coconut shells can be used as fuel in boilers, the aim of this study was to evaluate the thermal characteristics of coconut shells in this regard. This study used experimental results to evaluate the performance of a boiler when coconut shells were used as solid fuel. The variations in feed rate were 5, 7.5, and 10 kg/h, and the water flow rates varied between 1 litre per minute (lpm), 2 lpm, and  3 lpm. Temperature data were collected every second via data acquisition , and the mass flow rate of the flue gas was collected every 5 min using a pitot tube equation. One of the parameters evaluated in determining the success of coconut shells as boiler fuel is the thermal efficiency of the boiler. The results showed that the maximum thermal efficiency reached approximately 62.04%, and the maximum flue gas temperature was approximately 500 ℃ for a biomass mass flow rate of 7.5 kg/h. The maximum water temperature of the boiler was 99 ℃, which was reached at a minimum water flow rate of 1 lpm. The results showed that coconut shells are suitable for use as boiler fuel. 
Performance characterization of a novel PV/T panel with nanofluids under the climatic conditions of Muscat, Oman Afzal Husain; Nabeel Z. Al-Rawahi; Nasser A. Al-Azri; Mohammed Al-Naabi; Musaab El-Tahir
International Journal of Renewable Energy Development Vol 12, No 5 (2023): September 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.53287

Abstract

The study presents an experimental analysis of a novel mini channels-based Photovoltaic/Thermal (PV/T) panel with nanofluid flow. The design consists of a PV plate attached to an aluminum substrate absorber plate having minichannels grooved on it to act as a solar collector and cooling mechanism for PV. The proposed design was tested for thermal and electrical efficiencies under the working fluids of water, Al2O3, and SiO2 nanofluids at 0.1% and 0.2% concentrations in water and at a flow rate of 0.005 l/s to 0.045 l/s. The experiments were carried out outdoors in a real environment and the measurements were taken for PV surface and fluid temperatures, incidence solar flux, electrical voltage, and current produced. The PV and PV/T performance was compared, and a noticeable enhancement in electrical efficiency was observed with the proposed design as compared to the bare PV module, and an appreciable augmentation in thermal efficiency was noticed when nanofluids were applied. The maximum electrical and thermal efficiencies of PV/T with 0.2% Al2O3 nanofluid were 19.1% and 73.4%, respectively; whereas for bare PV panels, the electrical efficiency was 18.7%. The Al2O3 nanofluid at 0.2% exhibited more than a 10% increase in thermal efficiency compared to water as a working fluid in PV/T.

Page 6 of 71 | Total Record : 709


Filter by Year

2012 2026


Filter By Issues
All Issue Vol 15, No 2 (2026): March 2026 Vol 15, No 1 (2026): January 2026 Vol 14, No 6 (2025): November 2025 Vol 14, No 5 (2025): September 2025 Vol 14, No 4 (2025): July 2025 Vol 14, No 3 (2025): May 2025 Vol 14, No 2 (2025): March 2025 Vol 14, No 1 (2025): January 2025 Accepted Articles Vol 13, No 6 (2024): November 2024 Vol 13, No 5 (2024): September 2024 Vol 13, No 4 (2024): July 2024 Vol 13, No 3 (2024): May 2024 Vol 13, No 2 (2024): March 2024 Vol 13, No 1 (2024): January 2024 Vol 12, No 6 (2023): November 2023 Vol 12, No 5 (2023): September 2023 Vol 12, No 4 (2023): July 2023 Vol 12, No 3 (2023): May 2023 Vol 12, No 2 (2023): March 2023 Vol 12, No 1 (2023): January 2023 Vol 11, No 4 (2022): November 2022 Vol 11, No 3 (2022): August 2022 Vol 11, No 2 (2022): May 2022 Vol 11, No 1 (2022): February 2022 Vol 10, No 4 (2021): November 2021 Vol 10, No 3 (2021): August 2021 Vol 10, No 2 (2021): May 2021 Vol 10, No 1 (2021): February 2021 Vol 9, No 3 (2020): October 2020 Vol 9, No 2 (2020): July 2020 Vol 9, No 1 (2020): February 2020 Vol 8, No 3 (2019): October 2019 Vol 8, No 2 (2019): July 2019 Vol 8, No 1 (2019): February 2019 Vol 7, No 3 (2018): October 2018 Vol 7, No 2 (2018): July 2018 Vol 7, No 1 (2018): February 2018 Vol 6, No 3 (2017): October 2017 Vol 6, No 2 (2017): July 2017 Vol 6, No 1 (2017): February 2017 Vol 5, No 3 (2016): October 2016 Vol 5, No 2 (2016): July 2016 Vol 5, No 1 (2016): February 2016 Vol 4, No 3 (2015): October 2015 Vol 4, No 2 (2015): July 2015 Vol 4, No 1 (2015): February 2015 Vol 3, No 3 (2014): October 2014 Vol 3, No 2 (2014): July 2014 Vol 3, No 1 (2014): February 2014 Vol 2, No 3 (2013): October 2013 Vol 2, No 2 (2013): July 2013 Vol 2, No 1 (2013): February 2013 Vol 1, No 3 (2012): October 2012 Vol 1, No 2 (2012): July 2012 Vol 1, No 1 (2012): February 2012 More Issue