cover
Contact Name
Rezky Yunita
Contact Email
rezky.yunita@bmkg.go.id
Phone
+6282125693687
Journal Mail Official
jurnal.mg@gmail.com
Editorial Address
Jl. Angkasa 1 No. 2 Kemayoran, Jakarta Pusat 10720
Location
Kota adm. jakarta pusat,
Dki jakarta
INDONESIA
Jurnal Meteorologi dan Geofisika
ISSN : 14113082     EISSN : 25275372     DOI : https://doi.org/10.31172/jmg
Core Subject : Science,
Jurnal Meteorologi dan Geofisika (JMG) is a scientific research journal published by the Research and Development Center of the Meteorology, Climatology, and Geophysics Agency (BMKG) as a means to publish research and development achievements in Meteorology, Climatology, Air Quality and Geophysics.
Articles 171 Documents
Network-Based Equity Evaluation of Tsunami Evacuation Access for a Megathrust Scenario in Palabuhanratu: English Sudibyo, Reno; Kurniadi, Anwar; Subiyanto, Adi; Ramadhan, Fajar Gilang
Jurnal Meteorologi dan Geofisika Vol. 26 No. 2 (2025)
Publisher : Pusat Penelitian dan Pengembangan BMKG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31172/jmg.v26i2.1196

Abstract

We present a network-based equity evaluation of tsunami evacuation access for a megathrust scenario in Palabuhanratu, quantifying both individual safety attainment and the spatial distribution of access. By overlaying physics-based inundation data with a road graph, we compute multimodal time-to-safety and isochrones, summarizing village-level access through overall reachability (RR), Gini, and hazard-weighted Gini (Gini*) indices. Evacuation time allowances (ETAs) are set at 22, 18, and 15 minutes—validated against site-specific arrival modeling and real-world departure observations from the 2024 Noto event—revealing a critical temporal tipping point. While an ETA of 22 minutes ensures total reachability (RR=1.00) with low inequality, tightening the window to 18 and 15 minutes sharply reduces RR and increases Gini* scores. Furthermore, the addition of an alternative Tsunami Evacuation Area (TEA) at Smile Hill yields localized time savings and minor gains in specific clusters at 22 minutes, yet provides no systemwide benefit at shorter ETAs, indicating that time scarcity dominates access during tight windows. Methodologically, this study employs "beat-the-wave" logic and least-cost routing on OSMnx/NetworkX graphs, offering a reproducible screening tool that integrates access, fairness, and hazard emphasis for TEA design under time-critical evacuation constraints.