cover
Contact Name
Himawan Tri Bayu Murti Petrus
Contact Email
jurnal.rekpros@ugm.ac.id
Phone
-
Journal Mail Official
jurnal.rekpros@ugm.ac.id
Editorial Address
Jl. Grafika No. 2, Yogyakarta, Indonesia
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Jurnal Rekayasa Proses
ISSN : 1978287X     EISSN : 25491490     DOI : -
Core Subject : Engineering,
Jurnal Rekayasa Proses is an open-access journal published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada as scientific journal to accommodate current topics related to chemical and biochemical process exploration and optimization which covers multi scale analysis from micro to macro and full plant size. Specialization topics covered by Jurnal Rekayasa Proses are: 1. Kinetics and Catalysis Includes simulations and experiments in reaction kinetics, catalyst synthesis and characterization, reactor design, process intensification, microreactor, multiphase reactors, multiscale phenomena, transfer phenomena in multiphase reactors. 2. Separation and Purification System Includes phase equilibrium, mass transfer, mixing and segregation, unit operation, distillation, absorption, extraction, membrane separation, adsorption, ion exchange, chromatography, crystallization and precipitation, supercritical fluids, bioprocess product purification. 3. Process System Engineering Includes simulation, analysis, optimization, and process control on chemical/biochemical processes based on mathematical modeling; multiscale modeling strategy (molecular level, phase level, unit level, and inter-unit integration); design of experiment (DoE); current methods on simulation for model parameter determination. 4. Oil, Gas, and Coal Technology Includes chemical engineering application on process optimization to achieve utmost efficiency in energy usage, natural gas purification, fractionation recovery, CO2 capture, coal liquefaction, enhanced oil recovery and current technology to deal with scarcity in fossil fuels and its environmental impacts. 5. Particle Technology Includes application of chemical engineering concepts on particulate system, which covers phenomenological study on nucleation, particle growth, breakage, and aggregation, particle population dynamic model, particulate fluid dynamic in chemical processes, characterization and engineering of particulate system. 6. Mineral Process Engineering Includes application of chemical engineering concepts in mineral ore processing, liberation techniques and purification, pyrometallurgy, hydrometallurgy, and energy efficiency in mineral processing industries. 7. Material and biomaterial Includes application of chemical engineering concepts in material synthesis, characterization, design and scale up of nano material synthesis, multiphase phenomena, material modifications (thin film, porous materials etc), contemporary synthesis techniques (such as chemical vapor deposition, hydrothermal synthesis, colloidal synthesis, nucleation mechanism and growth, nano particle dispersion stability, etc.). 8. Bioresource and Biomass Engineering Includes natural product processing to create higher economic value through purification and conversion techniques (such as natural dye, herbal supplements, dietary fibers, edible oils, etc), energy generation from biomass, life cycle and economic analysis on bioresource utilization. 9. Biochemistry and Bioprocess Engineering Includes biochemical reaction engineering, bioprocess optimization which includes microorganism selection and maintenance, bioprocess application for waste treatment, bioreactor modeling and optimization, downstream processing. 10. Biomedical Engineering Includes enhancement of cellular productions of enzymes, protein engineering, tissue engineering, materials for implants, and new materials to improve drug delivery system. 11. Energy, Water, Environment, and Sustainability Includes energy balances/audits in industries, energy conversion systems, energy storage and distribution system, water quality, water treatment, water quality analysis, green processes, waste minimization, environment remediation, and environment protection efforts (organic fertilizer production and application, biopesticides, etc.).
Articles 273 Documents
Adsorpsi air dari campuran uap etanol-air dengan zeolit sintetis 4A pada packed bed dalam rangka produksi fuel grade ethanol Handrian Handrian; Wahyudi Budi Sediawan; Aswati Mindaryani
Jurnal Rekayasa Proses Vol 11 No 2 (2017): Volume 11, Number 2, 2017
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.30344

Abstract

Ethanol can be used as fuel if it has a purity of 99.5%, while ethanol distillation will stop at its azeotrop point, ie at 95.6%. Adsorption of molecular sieve is one of the methods to obtain ethanol with level above the azeotropic point. Adsorbent that serves as molecular sieve is synthetic zeolite 4A. The adsorbent has a pore diameter of 3.9 Ǻ, then water and ethanol each has a molecular diameter of 2.75 Ǻ and 4.4 Ǻ. Hence the adsorbent is selective against the ethanol-water mixture. The purpose of this research is to obtain ethanol above its azeotropic point and to study the relationship between the influence of flow rate (Vz) and temperature (T) to changes in the number of mass transfer coefficient (kc), radial diffusivity (Der) and henry constants (H') which can be used as parameters in the design of adsorption tools on a commercial scale.This experiment was conducting by weighing zeolite 4A as much as 100 grams, then compiled and measured the height on packed bed column adsorbent. The heating regulator is switched on and set to a constant temperature of 80, 85, 90, 95 and 100 0C. Ethanol 95.61% with 250 ml volume is put into three-neck flask, then heat to evaporate. Turn on the cooling back and adjust the amount of formed vapor rate by adjusting the faucet opening and the degree of voltage in the heating mantle. The magnitude of the vapor flow rate is set at 2, 4 and 6 liters / minute. The products is accomodated and samples were taken every minute to analyze the ethanol content.This adsorption process gives the highest yield of ethanol with 99.40% content. The steam flow rate of 2 lpm and the temperature of 800C is the optimum combination in this research because much of the water vapor adsorbed on the 4A zeolite grain is 7.93 grams. The numerical calculation provides the result that the value of Der in this experiment is 1.59.10-3 cm2 / men, and the relation of kc are the function of reynolds and H' the function of temperature are as follows: kc=7.95.10-3(ρ.vz.D/μ)0.164 and H'=4.47.10-3.e(2565.26/T)
Pengurangan zat warna remazol red Rb menggunakan metode elektrokoagulasi secara batch Novie Putri Setianingrum; Agus Prasetya; Sarto Sarto
Jurnal Rekayasa Proses Vol 11 No 2 (2017): Volume 11, Number 2, 2017
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.26900

Abstract

Batik is one of the distinctive cultural chacteristic of the Indonesian national that has gained recognition from UNESCO. Batik industries have grown rapidly. However, the activity industry produces liquid, especially from batik’s dyeing processes.. The conventional method which is used for processing wastewater still has limitation so that an innovation method wastewater treatment is need for example electrocoagulation. Electrocoagulation is a process of coagulation using unidirectional electrics current through electro-chemical process. In this work, electrocoagulation was employed to treat wastewater (synthetic dyes remazol red (Rb) as wastewater model). The method was carried out by varying the distance between electrode distance and electrical voltage. Variation of distance between electrode range were 2 cm and 3 cm while variation of electrical voltage range were 10 volt and 15 volt. To determine the effect of electrode distance and electrical voltage on treatsment performances the chemical oxygen demand(COD), total suspended solid (TSS) and waste color. The samples were taken at 10 minutes, 20 minutes, 40 minutes and 60 minutes during the process. The results showed that the distance of the electrode and the voltage affected to thr reduction of COD, TSS and waste color. The optimum elecrode distance and voltage in this research were 2 cm and 10 volt. The research showed the decrease in COD concentration from 428 mg/L to 54 mg/L, TSS concentration from 850 mg/L to 277 mg/L and the decrease in waste color from 2733 PtCo to 75,5 PtCo.
Pengaruh penambahan limestone terhadap kuat tekan semen Portland komposit Irfan Purnawan; Andi Prabowo
Jurnal Rekayasa Proses Vol 11 No 2 (2017): Volume 11, Number 2, 2017
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.31136

Abstract

Cement is the main component of construction that makes it a significant commodity. Portland Composite Cement (PCC) is one of new cement variants that has similar characteristic to Portland Cement, but with better quality, more environmentally friendly and cheaper in price. The objective of this research is to understand the influence of limestone to the compressive strength of the cement and to determine the percentage of added limestone that gives maximum compressive strength to PPC. The limestone varies added to the cement are 0, 5, 10, 15, 20 and 25%. The impact of added limestone can be studied from several tests such as fineness test, residue test, chemical composition test and cement compressive strength. The result shows that the higher percentage of limestone added to the cement, the higher the result for residue test and fineness test, but lower result for compressive strength. The highest compressive strength obtained is at 2 days age while the best composition of the blended cement is 77% clinker, 15% limestone, 3% gypsum and 5% blast furnace slag.
Analisis pengaruh bahan dasar terhadap indeks viskositas pelumas berbagai kekentalan Rini Siskayanti; Muhammad Engkos Kosim
Jurnal Rekayasa Proses Vol 11 No 2 (2017): Volume 11, Number 2, 2017
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.31147

Abstract

Lubricants are chemicals, which are generally liquid, provided between two moving objects to reduce frictional forces. The lubricant is made from a 70-90% base oil mixture and added with an additive to enhance its properties. Basic lubricants can be grouped into 3 ie mineral lubricants, vegetable lubricants and synthetic lubricants. One of the functions of lubricants is as an engine coolant from heat arising from friction and sealing. Lubricant resistance to temperature changes is strongly influenced by the type of lubricant base material. The purpose of this research is to know the influence of basic material of lubricant to temperature change as measured by Viscosity Index value. Research done by making machine lubricant with various viscosity with addition of same additives, only kind of lubricant that used different but still refers to standard lubricant characteristic tested. Of 5 samples tested were DEO API CI-4 SAE 15W-40, API PCMO SN SAE 10W-40, API MCO SL SAE 10W-30, HO ISO VG 32, TO API TO-4 SAE 10W showed that lubricant using materials Synthetic foundations have higher viscosity index values than minerals (13-30% higher). This indicates that the quality of lubricants is also getting better.
Seleksi isolat bakteri amilolitik dari rhizosfer Canna edulis, Kerr. untuk produksi poli hidroksi alkanoat dari limbah cair tapioka Nurhayati Nurhayati; Ocky Karna Radjasa; Irfan Dwidya Prijambada
Jurnal Rekayasa Proses Vol 11 No 2 (2017): Volume 11, Number 2, 2017
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.33194

Abstract

Petrochemical-based plastic waste accumulated in landfills have been posing serious threat to the environment as this kind of plastics are non-biodegradable. Replacing petrochemical-based plastics with biodegradable plastics constitutes a challenging solution both in terms of mechanical design of the process and most importantly the availability of powerful local microorganism for the process. Therefore, the current study was searching for appropriate local microorganisms for poly hydroxyl alkanoate (PHA) production from starch waste, which was considered as one of cheap carbon sources. Waste water of cassava industry is a good resource of such starch waste water. The microbes were isolated from Canna edulis, Kerr. rhizosphere from Cangkringan. The expected isolates were the bacteria enable the coupling of carbon catabolic pathways with PHA anabolic pathways. It was found that ten isolates were able to use waste water of cassava flour industry as carbon source. The PHA quantitative analysis by spectrophotometer showed that the isolate of Bacillus sp. C8 produced the highest PHA of 2,095 g/L. Further FTIR analysis showed specific bands near 1363,67 cm-1, 1641,42 cm-1, 2929,87 cm-1, 3408,22 cm-1 wavelengths which revealed the presence of CH3, ester carbonyl group (C=O), C-H and terminal OH group of PHA.
Pengaruh steam pretreatment terhadap degradasi selulosa dan limonen pada limbah jeruk dalam produksi biohidrogen Gita Khaerunnisa; Sarto Sarto; Sutijan Sutijan; Siti Syamsiah
Jurnal Rekayasa Proses Vol 12 No 1 (2018): Volume 12, Number 1, 2018
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.31163

Abstract

This research presents the influence of steam pretreatment to orange waste and its effect on the production of biohydrogen. The steam pretreatments with various times of 2, 4, and 6 hours were applied to the samples. After the pretreatment, the samples were fermented for seven days, and the contents of cellulose, limonene, volatile fatty acid (VFA), and hydrogen were assessed on the days of 1, 2, 3, 5 and 7. Kinetic parameters of hydrogen production were evaluated using the modified Gompertz`s equation. The result of this research showed that the steam pretreatment significantly reduced the cellulose and limonene compounds. The content of cellulose in the substrate after 2, 4 and 6 hours pretreatment were 37.08%; 36.63%; and 15.95%, respectively. Moreover, the content of limonene after pretreatment of 2, 4, and 6 hours were 57.44 ppm; 38.80 ppm; and 36.11 ppm, respectively. Analysis of kinetic parameters of production of hydrogen showed that the maximum productions of hydrogen (Hmax) in the samples after pretreatment of 2, 4, and 6 hours were 11.492 mL; 52.612 mL; 22.345 mL, respectively. The maximum production rates (Rm) at specified pretreatment time (2, 4, and 6 hours) were 9.888 mL H2/hour; 10.008 mL H2/hour; 12.982 mL H2/hour and the lag phases were 49.689 hours; 24.742 hours; and 24.885 hours. The study elucidated that applying pretreatment for 4 hours gives the optimum condition for hydrogen production.
Model dispersi gas dan vapor cloud explosion pada kebocoran outlet pigtail tubes primary reformer Perwitasari Perwitasari; P. Sumardi; Indra Perdana
Jurnal Rekayasa Proses Vol 12 No 1 (2018): Volume 12, Number 1, 2018
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.33802

Abstract

Outlet pigtail tubes, one of the components in primary reformer, have a function to carry the reformed gas from the catalyst tubes to the collection manifold. Moreover, it also has a function to provide the required flexibility within the system to avoid overstress at the end of connections of the pigtail to the manifold and to the bottom of the catalyst tube. It operates in an extreme condition with temperature range of 825-850 oC and pressure 36.2 kg/cm2 which is possible to initiate a failure. The consequences of outlet pigtail tubes failure are a dispersion of synthesis gas and vapor cloud explosion. This research aimed to make a model of those consequences with an assumption that the leakage hole was the same as the diameter of outlet pigtail tubes. The gas dispersion model used in this research was dense gas dispersion continuous release model. The results showed that the highest ratio of synthesis gas-air concentration was 0.1 at 17.4 m distance from leaking point. Whereas the lowest ratio of synthesis gas-air concentration was 0.002 at 163.4 m distance from leaking point. The highest ratio of the concentration of gas dispersion gave vapor cloud explosion energy of about 11.67 x 105 kJ with an overpressure of about 8.41 kPa. The overpressure caused a partial demolition of the building (for example control room), panels blow in, and fastening fails of equipment or machines around the area.
Sintesis dan karakterisasi silika tersulfatasi dari sekam padi Idra Herlina; Edwin Rizki Safitra
Jurnal Rekayasa Proses Vol 12 No 1 (2018): Volume 12, Number 1, 2018
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.34362

Abstract

In this work, sulphated silica (SiO2/SO3-H+) has been synthesized from rice husk through sol-gel method. Characterization with IR spectrophotometers showed similar peak between silica and sulphated silica. Silica typical bands consisting of strain O-H, bending water molecules, and asymmetric vibrations of silica atoms present in the siloxane appear at the peak of the analysis showing that silica synthesis of rice husk has been successfully performed. The modification of silica with sulphuric acid was not confirmed by IR spectrophotometers because the S-OH strain of sulphate ions overlaps with asymmetric vibrations of silica atoms present in siloxanes. The resulting sulphated silica was used as a catalyst in the esterification reaction of free fatty acid in a crude palm oil pond (Pond CPO). Pond CPO is a CPO that is bound to palm oil mill waste water. Pond CPO has free fatty acid content (FFA) between 40 to 70%. High levels of FFA CPO can be derived through esterification reactions with the help of SiO2/SO3-H+ catalyst. In this study, SiO2/SO3-H+ catalyst concentrations were varied i.e. 1, 3, and 5% (w/w). From the research result, the best catalyst performance was obtained at 5% concentration with the ability to decrease the FFA level by 49.70%.
Recovery ion Hg2+ dari limbah cair industri penambangan emas rakyat dengan metode presipitasi sulfida dan hidroksida Ilma Fadlilah; Agus Prasetya; Panut Mulyono
Jurnal Rekayasa Proses Vol 12 No 1 (2018): Volume 12, Number 1, 2018
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.34496

Abstract

Unlicensed gold mining activities using mercury (Hg) as a gold element binder is called the amalgamation process. Mercury is a heavy metal and categorized as toxic material. The use of mercury can potentially cause a pollution in environment, especially the aquatic system. For overcoming the heavy metals of mercury in liquid waste, it needs an alternative wastewater treatment method e.g. chemical precipitation. This study is aimed to recover Hg2+ ions from liquid wastes by using sulphide precipitation and hydroxide methods. This research studied the effect of pH on Hg2+ ions which is deposited in the precipitation process and evaluated the rate of Hg2+ precipitation formation. Precipitation was carried out by using sodium sulphide (Na2S) 0.3 M and Ca(OH)2 0.004 M as a precipitation agent with a rapid mixing speed for about 200 rpm for 3 minutes and continued with slow mixing for about 40 rpm for 30 minutes. Then, the liquid sample was left for 24 hours to precipitate. The results showed that precipitation method by using Na2S solution can decrease the content of Hg in HgCl2 synthetic waste. Optimum mass of HgS precipitate of 0.046 g was achieved at pH 9 with a removal efficiency percentage up to 99.81%. The rate of formation of HgS precipitate is 0.4mg/ hour. While, hydroxide precipitation method can decrease mercury level up to 90.11% at pH 12 and mass of Hg (OH)2 precipitate obtained is 0.28 g. However, the result of EDX analysis of the precipitate of Hg (OH)2 showed that the content of Hg precipitate is still low at 0.28 wt.%.
Kinerja dan kinetika produksi biohidrogen secara batch dari sampah buah melon dalam reaktor tangki berpengaduk Febrina Sarlinda; Sarto Sarto; Muslikhin Hidayat
Jurnal Rekayasa Proses Vol 12 No 1 (2018): Volume 12, Number 1, 2018
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.33611

Abstract

Melon fruit waste with high sugar and water content is potential as a substrate for hydrogen production by dark fermentation. This study investigated the performance of biohydrogen production from melon fruit waste in a stirred tank reactor with initial concentration of 13100 mg sCOD/L, in room temperature, initial pH of 7 and controlling final pH at 5.5 by adding NaOH. The fermentation was carried out for 24 hours. The value of pH, volatile solid (VS), soluble chemical oxygen demand (sCOD), volatile fatty acid (VFA), biogas volume, hydrogen content, and cell concentration was analized every hour to determine the performance of reactor. Hydrogen content reached 16.20% with hydrogen production rate (HPR) of 458.12 mL/Lreactor/day in the standard temperature and pressure (STP) condition. Substrate consumption at the end of fermentation reached 24.61% of sCOD and 78.28% of VS. Metabolite products were dominated by acetate and butyrate with butyrate to acetate ratio of 7:6. The kinetic of product formation was evaluated by the kinetic model of Gompertz. Meanwhile the kinetics of cell growth was approximated by logistics model.

Page 11 of 28 | Total Record : 273


Filter by Year

2007 2025


Filter By Issues
All Issue Vol 19 No 2 (2025): Volume 19, Number 2, 2025 Vol 19 No 1 (2025): Volume 19, Number 1, 2025 Vol 18 No 2 (2024): Volume 18, Number 2, 2024 Vol 18 No 1 (2024): Volume 18, Number 1, 2024 Vol 17 No 2 (2023): Volume 17, Number 2, 2023 Vol 17 No 1 (2023): Volume 17, Number 1, 2023 Vol 16 No 2 (2022): Volume 16, Number 2, 2022 Vol 16 No 1 (2022): Volume 16, Number 1, 2022 Vol 15 No 2 (2021): Volume 15, Number 2, 2021 Vol 15 No 1 (2021): Volume 15, Number 1, 2021 Vol 14 No 2 (2020): Volume 14, Number 2, 2020 Vol 14 No 1 (2020): Volume 14, Number 1, 2020 Vol 13 No 2 (2019): Volume 13, Number 2, 2019 Vol 13 No 1 (2019): Volume 13, Number 1, 2019 Vol 12 No 2 (2018): Volume 12, Number 2, 2018 Vol 12 No 1 (2018): Volume 12, Number 1, 2018 Vol 11 No 2 (2017): Volume 11, Number 2, 2017 Vol 11 No 1 (2017): Volume 11, Number 1, 2017 Vol 10 No 2 (2016): Volume 10, Number 2, 2016 Vol 10 No 1 (2016): Volume 10, Number 1, 2016 Vol 9 No 2 (2015): Volume 9, Number 2, 2015 Vol 9 No 1 (2015): Volume 9, Number 1, 2015 Vol 8 No 2 (2014): Volume 8, Number 2, 2014 Vol 8 No 1 (2014): Volume 8, Number 1, 2014 Vol 7 No 2 (2013): Volume 7, Number 2, 2013 Vol 7 No 1 (2013): Volume 7, Number 1, 2013 Vol 6 No 2 (2012): Volume 6, Number 2, 2012 Vol 6 No 1 (2012): Volume 6, Number 1, 2012 Vol 5 No 2 (2011): Volume 5, Number 2, 2011 Vol 5 No 1 (2011): Volume 5, Number 1, 2011 Vol 4 No 2 (2010): Volume 4, Number 2, 2010 Vol 4 No 1 (2010): Volume 4, Number 1, 2010 Vol 3 No 2 (2009): Volume 3, Number 2, 2009 Vol 3 No 1 (2009): Volume 3, Number 1, 2009 Vol 2 No 2 (2008): Volume 2, Number 2, 2008 Vol 2 No 1 (2008): Volume 2, Nomor 1, 2008 Vol 1 No 1 (2007): Volume 1, Number 1, 2007 More Issue