cover
Contact Name
Himawan Tri Bayu Murti Petrus
Contact Email
jurnal.rekpros@ugm.ac.id
Phone
-
Journal Mail Official
jurnal.rekpros@ugm.ac.id
Editorial Address
Jl. Grafika No. 2, Yogyakarta, Indonesia
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Jurnal Rekayasa Proses
ISSN : 1978287X     EISSN : 25491490     DOI : -
Core Subject : Engineering,
Jurnal Rekayasa Proses is an open-access journal published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada as scientific journal to accommodate current topics related to chemical and biochemical process exploration and optimization which covers multi scale analysis from micro to macro and full plant size. Specialization topics covered by Jurnal Rekayasa Proses are: 1. Kinetics and Catalysis Includes simulations and experiments in reaction kinetics, catalyst synthesis and characterization, reactor design, process intensification, microreactor, multiphase reactors, multiscale phenomena, transfer phenomena in multiphase reactors. 2. Separation and Purification System Includes phase equilibrium, mass transfer, mixing and segregation, unit operation, distillation, absorption, extraction, membrane separation, adsorption, ion exchange, chromatography, crystallization and precipitation, supercritical fluids, bioprocess product purification. 3. Process System Engineering Includes simulation, analysis, optimization, and process control on chemical/biochemical processes based on mathematical modeling; multiscale modeling strategy (molecular level, phase level, unit level, and inter-unit integration); design of experiment (DoE); current methods on simulation for model parameter determination. 4. Oil, Gas, and Coal Technology Includes chemical engineering application on process optimization to achieve utmost efficiency in energy usage, natural gas purification, fractionation recovery, CO2 capture, coal liquefaction, enhanced oil recovery and current technology to deal with scarcity in fossil fuels and its environmental impacts. 5. Particle Technology Includes application of chemical engineering concepts on particulate system, which covers phenomenological study on nucleation, particle growth, breakage, and aggregation, particle population dynamic model, particulate fluid dynamic in chemical processes, characterization and engineering of particulate system. 6. Mineral Process Engineering Includes application of chemical engineering concepts in mineral ore processing, liberation techniques and purification, pyrometallurgy, hydrometallurgy, and energy efficiency in mineral processing industries. 7. Material and biomaterial Includes application of chemical engineering concepts in material synthesis, characterization, design and scale up of nano material synthesis, multiphase phenomena, material modifications (thin film, porous materials etc), contemporary synthesis techniques (such as chemical vapor deposition, hydrothermal synthesis, colloidal synthesis, nucleation mechanism and growth, nano particle dispersion stability, etc.). 8. Bioresource and Biomass Engineering Includes natural product processing to create higher economic value through purification and conversion techniques (such as natural dye, herbal supplements, dietary fibers, edible oils, etc), energy generation from biomass, life cycle and economic analysis on bioresource utilization. 9. Biochemistry and Bioprocess Engineering Includes biochemical reaction engineering, bioprocess optimization which includes microorganism selection and maintenance, bioprocess application for waste treatment, bioreactor modeling and optimization, downstream processing. 10. Biomedical Engineering Includes enhancement of cellular productions of enzymes, protein engineering, tissue engineering, materials for implants, and new materials to improve drug delivery system. 11. Energy, Water, Environment, and Sustainability Includes energy balances/audits in industries, energy conversion systems, energy storage and distribution system, water quality, water treatment, water quality analysis, green processes, waste minimization, environment remediation, and environment protection efforts (organic fertilizer production and application, biopesticides, etc.).
Articles 273 Documents
Mekanisme fouling pada membran mikrofiltrasi mode aliran searah dan silang Iqbal Shalahuddin; Yusuf Wibisono
Jurnal Rekayasa Proses Vol 13 No 1 (2019): Volume 13, Number 1, 2019
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.40458

Abstract

Microfiltration is a low pressure driven membrane process of about 1 bar trans-membrane pressure which is used frequently for separating dissolved particles within 0.1 to 10 μm size. Microfiltration membranes are utilized in water and wastewater treatment processes either during pretreatment, treatment, or post-treatment steps. Moreover in bioprocessing, microfiltration is used in upstream process for substrate sterilization or in downstream process for microbial suspension separation. Fouling is one major concern of membrane filtration processes, including microfiltration. In this article, the fouling mechanism on microfiltration membrane is explained based on the blocking model refer to cake filtration due to the complexity of fouling phenomena. Fouling mechanism on dead-end and cross-flow modes microfiltration are explained, and basically distinguished into four different mechanisms, i.e. complete blocking, standard blocking, intermediate blocking and cake filtration. The proposed models are based on constant pressure operation on the uniform membrane pores, both for dead-end and cross-flow modes. Cross-flow mode, however, is restricted on the beginning of filtration until critical flux condition is reached.
Proses peruraian anaerobik palm oil mill effluent dengan media zeolit termodifikasi Melly Mellyanawaty; Firda Mahira Alfiata Chusna; Estin Nofiyanti
Jurnal Rekayasa Proses Vol 13 No 1 (2019): Volume 13, Number 1, 2019
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.39206

Abstract

This work evaluated the effect of modified zeolite as microbial immobilization medium in anaerobic digestion of palm oil mill effluent (POME). The affinity of microorganisms to attach and grow on the media surface could be increased by the addition of micro-nutrient into the media. The effect of micro-nutrient addition was studied in 1000 mL Erlenmeyer flask as batch reactors. Experiments were conducted for 30 days. The concentration of soluble chemical oxygen demand (COD) in substrate was 8000 mg/L. Zeolite was impregnated with nickel (Ni) and zinc (Zn) at individual concentration of 2.7x10-3 mg Ni/g zeolite and 3.5x10‑3 mg Zn/g zeolite. The influence of each modified zeolite was determined by periodic measurement of sCOD, volatile fatty acid (VFA), pH, and biogas production. Cumulative biogas productions in this study were 252.44; 172.13; 57.70 ml from Ni-modified, Zn-modified and natural zeolites, respectively. The highest sCOD removal was obtained in reactor with Zn-modified zeolite with 38.22% removal, followed by 33.96% with Ni-modified zeolite, and 27.87% removal with natural zeolite.
Pelarutan emas pada pelindian konsentrat emas hasil roasting menggunakan reagen tiosianat Fika Rofiek Mufakhir; Jones Maima Sinaga; Soesaptri Oediyani; Widi Astuti
Jurnal Rekayasa Proses Vol 13 No 1 (2019): Volume 13, Number 1, 2019
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.41519

Abstract

Dissolution of gold from roasting concentrate of gold ore using potassium thiocyanate with the presence of ferric chloride as an oxidizer was investigated. The concentrate was taken from Lengkukai gold mine. Gold ore particles under 53 µm in size were roasted at varied temperature, separated using wet magnetic separator, and finally leached. The X-ray diffraction (XRD) analysis showed that there were phase changes after roasting with the emergence of new phases such as hematite, pyrrhotite, and almandine. Leaching of gold concentrate after roasting and magnetic separation showed that gold was in non-magnetic concentrate at 950oC with the highest gold dissolution of 0.95 mg/L, while magnet concentrate was completely absent. Experiments with the addition of Fe3+ ion oxidizers for 24-hour range did not have significant effect on gold dissolution. The highest gold concentration obtained of 2.29 mg/L was obtained at 12 hours with 0.1 M FeCl3. The increase of thiocyanate reagent concentrations, which showed a linear correlation to gold dissolution, produced up to 2.25 mg/L of gold concentration (12 hours at 0.3 M KSCN).
Mathematical modelling and simulation of hydrotropic delignification Indah Hartati; Wahyudi Budi Sediawan; Hary Sulistyo; Muhammad Mufti Azis; Moh Fahrurrozi
Jurnal Rekayasa Proses Vol 13 No 1 (2019): Volume 13, Number 1, 2019
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.42364

Abstract

Delignification is a fundamental step in bio-refinery for lignocellulose feedstock processing. Hydrotropic delignification is considered as a promising alternative compared to other conventional delignification processes due to the use of mild chemicals. In this paper, a quantitative description of hydrotropic delignification for a cylindrical biomass particle is presented by using fundamental concepts of chemical kinetics and transport processes. The development of hydrotropic delignification model was based on following assumptions: i) lignin in the biomass is immobile, ii) delignification is considered as a simultaneous process which involves intra-particle diffusion of hydrotropic agent followed by second order reaction for lignin and hydrotropic chemical, as well as intra-particle product diffusion. Finite difference approximation was applied to solve the resulting partial and ordinary differential equations. The simulation results of the proposed model may describe the concentration profiles of lignin, hydrotropic agent and soluble product distributions in a cylindrical solid particle as a function of radial position and time. In addition, the model could also predict the concentration of hydrotropic agent and soluble product in the liquid phase as well as the yield and conversion as a function of time. A local sensitivity analysis method using one factor at a time (OFAT), has been applied to investigate the influence of particle size and hydrotropic agent concentration to the yield and conversion of the hydrotropic delignification model. Validation of the proposed model was conducted by comparing the numerical results with an analytical solution for a simple case diffusion in cylinder with constant surface concentration and in the absence of chemical reaction. The validation result showed that the hydrotropic delignification model was in good agreement with the analytical solution.
Penurunan logam Hg dalam air menggunakan sistem sub-surface flow constructed wetland: studi efektivitas Rikhanatul Firdausy Puspitasari; Agus Prasetya; Edia Rahayuningsih
Jurnal Rekayasa Proses Vol 13 No 1 (2019): Volume 13, Number 1, 2019
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.39339

Abstract

High amount of Mercury contamination is commonly found in traditional gold mining areas. This problem might occur due to the use of amalgamation process in traditional gold extraction process by dissolving the gold-bearing rocks with mercury (Hg). The utilization of mercury in gold mining activity has contaminated the water with Hg which might lead to serious health problems. This research was carried out by discharging the Hg-contaminated wastewater to enter a system called the Sub-Surface Flow Constructed Wetland (SSF-SW). The system employed a mixture of soil and the fibers of water hyacinth as the media on which Echinodorus palaefolius L. was planted. The wastewater containing HgCl2 at 8.59 mg/L was flown. The flow rate and pH were set to 6.3 L/hour and 6-7 pH at room temperature. Samples were collected at 0; 3.5; 7; 10.5 hours every day. The SSF-CW system was continually run for 10.5 hours and 13.5hour batch. The result of this research showed that the efficiency of Hg removal reached 92.79%. The results showed that the SSF-CW offers a stable system to reduce the mercury levels as shown in the growth of the plant and the total Hg removal efficiency. Plants with Hg exposure have distinct patterns of chlorosis. Some leaves turning yellow and die, others start with new growth. In addition, the growth of Echinodorus palaefolius L. was also influenced by the amount of nutrients in the soil.
Pengaruh komposisi subtrat dari campuran kotoran sapi dan rumput gajah (Pennisetum purpureum) terhadap produktivitas biogas pada digester semi kontinu Agus Haryanto; Rivan Okfrianas; Winda Rahmawati
Jurnal Rekayasa Proses Vol 13 No 1 (2019): Volume 13, Number 1, 2019
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.41125

Abstract

This study aims to determine the effect of substrate composition on biogas production from a mixture of cow dung and elephant grass using semi-continuous digester. Fresh cow dung and elephant grass were obtained from Department of Animal Husbandry, Faculty of Agriculture, University of Lampung. Elephant grass was knife-chopped, crushed using a blender and then mixed with cow dung at a total solid (TS) ratio between elephant grass and cow dung varies from 35:65 (P1), 40:60 (P2), 45:55 (P3), and 50:50 (P4). This mixture was then diluted with tap water until its TS content reach 5% and was used as substrate. Four semi-continuous digesters (labeled as P1 to P4) having a capacity of 36 L and working volume of 28 L were initially loaded with 22 L of diluted fresh cow dung (dilution ratio of 1:1) as a starter (source of bacteria) and were left until stable condition. When the biogas was produced, the prepared substrate was added daily into the respective digester at a loading rate of 500 mL.d-1. Parameters to be observed included daily temperature and pH of the substrate, daily biogas production, TS and VS content, and biogas quality. The results showed that the digester worked at average pH of 6.9 and the daily temperature 26.3 to 29.7°C. The total biogas production for 60 days was 608.4, 676.8, 600.0, and 613.3 L, respectively for P1, P2, P3, and P4. Biogas yield after the substrate achieving the designed composition was 254 (P1), 260 (P2), 261 (P3), and 271 L.m-3 of the substrate (P4). The addition of elephant grass up to 50% could maintain high production of biogas.
Pemanfaatan limbah kulit kakao menjadi briket arang sebagai bahan bakar alternatif dengan penambahan ampas buah merah Syarifhidayahtullah Syarifhidayahtullah; Rochim Bakti Cahyono; Muslikhin Hidayat
Jurnal Rekayasa Proses Vol 13 No 1 (2019): Volume 13, Number 1, 2019
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.41517

Abstract

The conversion of cocoa shell waste into char briquettes has been carried out through various methods. However, the product characteristics do not meet the SNI briquettes requirements. Therefore, it is necessary to improve process engineering by mixing cocoa peel waste with red fruit pulp to get char briquettes in order to improve quality of briquette products. This research was carried out through pyrolysis process with temperthwatures up to 500 oC and held for 4 hours. The research objective was to produce char briquettes from cacao pod shell waste with the addition of red fruit pulp and its characteristic test. The study was designed with 2 variables, namely independent variables in the form of char raw material powder that passed 50 mesh sieve, weight ratio of cocoa shell char powder and red fruit pulp char powder (100:0, 70:30, 50:50, 30:70, and 0%:100%), pressure (100 kg/cm2), 10% starch adhesive from raw materials, and briquette diameter of 40 mm. Whereas the dependent variables are the moisture content (%), volatile content (%), ash content (%), fixed carbon content (%), and calorific value (cal/g). The results showed that the process of pyrolysis of char briquettes waste cocoa shell with red fruit pulp can increase its calorific value. The best characteristics of briquette were obtained from mixed briquettes (composition of 30%:70%) with moisture content of 5.63%, volatile content of 18.65%, ash content of 9.45%, fixed carbon content of 66.27%, and calorific value of 6422 cal/g.
Pemanfaatan ekstrak protein dari kacang-kacangan sebagai koagulan alami: review Hans Kristianto; Susiana Prasetyo; Asaf Kleopas Sugih
Jurnal Rekayasa Proses Vol 13 No 2 (2019): Volume 13, Number 2, 2019
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.46292

Abstract

Coagulation and flocculation are commonly used in water and wastewater treatment. Inorganic coagulant such as alum (Al2(SO4)3), ferrous sulphate (FeSO4), and polyaluminium chloride (PAC) are commonly used. These coagulants are known for its effectiveness and simple operation procedure. However, there are some drawbacks such as reduction in pH, potential negative health effect when the treated water is consumed, and large sludge volume. To overcome these problems, utilization of natural coagulants has been proposed. Based on its active coagulating agent, natural coagulant could be divided as polyphenolic, polysaccharides, and protein. Protein from beans and seeds is commonly used as the source of active coagulating agent, due to its effectiveness, availability, and relatively simple pretreatment is needed. Usually the protein is extracted by using 0.5-1 M NaCl solution as globulin is the major protein fraction in beans.The extracted protein could act as cationic polymer to neutralize negatively charged colloids through adsorption-charge neutralization mechanism. Extracted protein could work effectively to treat turbid and waste water with lower cost compared to alum. However, most of existing studies are still focused on small – pilot scale utilization thus further explorations are still needed.
Comparative study of nyamplung (Callophylum inophyllum) kernel oil obtained from mechanical and chemical extraction for biofuel production Hanifah Widiastuti; Meiti Pratiwi; Godlief F. Neonufa; Tatang H. Soerawidjaja; Tirto Prakoso
Jurnal Rekayasa Proses Vol 13 No 2 (2019): Volume 13, Number 2, 2019
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.42816

Abstract

Nyamplung (Callophylum inophyllum) contains oil around 40-73% in its seed. It has recently gained recognition as a potential source for biofuel production. The oil recovery process from renewable sources such as nyamplung is widely carried out by using chemical extraction with solvents. Nevertheless, this method is considered costly and there are safety issues as well as environmental concerns related to the solvents used. Therefore, mechanical extraction has emerged as an alternative method. In this study, the nyamplung oil recovered by mechanical extraction via hydraulic press and chemical extraction utilizing Soxhlet extraction was compared. Soxhlet extraction was carried out by using n-hexane as a solvent with a temperature of 70 oC for 5 hours. Before the extraction process, the kernel was initially pretreated to reduce the particle sizes and the water content. The results show that the oil yield recovered using the hydraulic press is 58%, which is comparable with the value obtained from Soxhlet extraction (65%). The oil characteristics were also compared, and the profiling shows no significant difference in the properties (saponification value, acid value, and iodine value) of oils recovered using both methods. The composition of fatty acids was also analyzed for utilization as a biofuel feedstock. Higher content of oleic acid was observed in oil resulted from chemical extraction while mechanical extraction yielded oil with higher palmitic acid content.
Disosiasi H2S dalam gas alam pada temperatur ruang menggunakan katalisator MgO: pengaruh jumlah katalis dan laju alir massa Devie Herdiansyah; Sri Haryati; Muhammad Djoni Bustan
Jurnal Rekayasa Proses Vol 13 No 2 (2019): Volume 13, Number 2, 2019
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.43154

Abstract

The presence of H2S in natural gas is very detrimental to ammonia industry because it can poison and deactivate steam reforming catalysts. In the ammonia plant Pusri-IB PT. Pusri Palembang, H2S was separated in the Desulfurizer Unit (201-D) by adsorption using ZnO adsorbent at low temperature (28 ° C). Unfortunately, in this process the ZnO adsorbent cannot be regenerated so that within one year the ZnO adsorbent will be saturated with sulfur. The alternative process of H2S separation is to dissociate H2S into its constituent elements (hydrogen and sulfur) with catalytic process. The magnesium oxide catalyst was chosen because magnesium oxide is a metal oxide compound widely known in the catalysis process and has two active sites. The highest H2S conversion that can be achieved by MgO catalyst is 92.29%. Unlike ZnO, MgO does not absorb H2S, but catalyzes the dissociation of H2S into hydrogen and solid sulfur without being changed consumed by the reaction itself so that the MgO catalyst has a longer life time than the ZnO adsorbent.

Filter by Year

2007 2025


Filter By Issues
All Issue Vol 19 No 2 (2025): Volume 19, Number 2, 2025 Vol 19 No 1 (2025): Volume 19, Number 1, 2025 Vol 18 No 2 (2024): Volume 18, Number 2, 2024 Vol 18 No 1 (2024): Volume 18, Number 1, 2024 Vol 17 No 2 (2023): Volume 17, Number 2, 2023 Vol 17 No 1 (2023): Volume 17, Number 1, 2023 Vol 16 No 2 (2022): Volume 16, Number 2, 2022 Vol 16 No 1 (2022): Volume 16, Number 1, 2022 Vol 15 No 2 (2021): Volume 15, Number 2, 2021 Vol 15 No 1 (2021): Volume 15, Number 1, 2021 Vol 14 No 2 (2020): Volume 14, Number 2, 2020 Vol 14 No 1 (2020): Volume 14, Number 1, 2020 Vol 13 No 2 (2019): Volume 13, Number 2, 2019 Vol 13 No 1 (2019): Volume 13, Number 1, 2019 Vol 12 No 2 (2018): Volume 12, Number 2, 2018 Vol 12 No 1 (2018): Volume 12, Number 1, 2018 Vol 11 No 2 (2017): Volume 11, Number 2, 2017 Vol 11 No 1 (2017): Volume 11, Number 1, 2017 Vol 10 No 2 (2016): Volume 10, Number 2, 2016 Vol 10 No 1 (2016): Volume 10, Number 1, 2016 Vol 9 No 2 (2015): Volume 9, Number 2, 2015 Vol 9 No 1 (2015): Volume 9, Number 1, 2015 Vol 8 No 2 (2014): Volume 8, Number 2, 2014 Vol 8 No 1 (2014): Volume 8, Number 1, 2014 Vol 7 No 2 (2013): Volume 7, Number 2, 2013 Vol 7 No 1 (2013): Volume 7, Number 1, 2013 Vol 6 No 2 (2012): Volume 6, Number 2, 2012 Vol 6 No 1 (2012): Volume 6, Number 1, 2012 Vol 5 No 2 (2011): Volume 5, Number 2, 2011 Vol 5 No 1 (2011): Volume 5, Number 1, 2011 Vol 4 No 2 (2010): Volume 4, Number 2, 2010 Vol 4 No 1 (2010): Volume 4, Number 1, 2010 Vol 3 No 2 (2009): Volume 3, Number 2, 2009 Vol 3 No 1 (2009): Volume 3, Number 1, 2009 Vol 2 No 2 (2008): Volume 2, Number 2, 2008 Vol 2 No 1 (2008): Volume 2, Nomor 1, 2008 Vol 1 No 1 (2007): Volume 1, Number 1, 2007 More Issue