cover
Contact Name
Ozkar F Homzah
Contact Email
jurnal.austenit@polsri.ac.id
Phone
+6282178533625
Journal Mail Official
jurnal.austenit@polsri.ac.id
Editorial Address
Lantai 2, Gedung Jurusan Teknik Mesin, Politeknik Negeri Sriwijaya, Jl. Srijaya Negara Bukit Besar Palembang 30139, Indonesia.
Location
Kota palembang,
Sumatera selatan
INDONESIA
AUSTENIT
ISSN : 20851286     EISSN : 26227649     DOI : https://doi.org/10.53893/austenit
AUSTENIT (pISSN 2085-1286 and eISSN 2622-7649) is a peer-reviewed open access journal published by Mechanical Engineering Department, Politeknik Negeri Sriwijaya. Focused on original articles in the form of technical and vocational research results or literature review which provides insight in the field of mechanical engineering and machinery that includes Mechanical Structure, Manufacturing, Metallurgy Sciences and Engineering, Design Engineering, Maintenance and Repair Engineering, Fluid Dynamics, HVAC (Heating, Ventilation and Air Conditioning), Heat-Mass Transfer, Sustainable Renewable Energy, Mechatronic and Control Systems or as well as other related Mechanical Engineering field study.
Arjuna Subject : -
Articles 5 Documents
Search results for , issue "Vol. 16 No. 2 (2024): AUSTENIT: October 2024" : 5 Documents clear
PENGUJIAN PROGRAM PREDIKSI KECEPATAN POROS ROTOR BERTINGKAT SECARA EKSPERIMENTAL Sembiring, Alexander; Lubis, Asnawi; Wahyudi, Retno
AUSTENIT Vol. 16 No. 2 (2024): AUSTENIT: October 2024
Publisher : Politeknik Negeri Sriwijaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53893/austenit.v16i2.8513

Abstract

In the process of designing a rotor shaft system, there are aspects that need to be considered to produce a well-functioning rotor shaft system when it starts operating. Failures that occur in rotor shaft systems are generally caused by excessive vibrations in the system. This can be avoided by detecting the system's natural frequencies early on, as predicting its natural frequencies can also predict its critical rotational speeds. The critical rotational speeds of the system can be determined by solving its equations of motion using various methods. In this study, the equations of motion of the system were solved using the finite element method, where local matrix equations were determined according to the equations and then global matrix equations were obtained and solved using a direct method, employing the eigenvalues and eigenvectors of the system. A program was designed to predict the critical rotational speeds of the system. The program was implemented using the MATLAB programming language. The results of the program, when compared with laboratory test results, showed a difference of 1.23%-3.69%.
DESIGN CONCEPT FOR THE DEVELOPMENT OF NATURAL PLANT FIBER EXTRACTOR AS A RAW MATERIAL FOR NATURAL FIBER COMPOSITES Azizi, M; Susilo, R. Dwi Pudji; Sebayang, Darwin; Fitri, Muhamad
AUSTENIT Vol. 16 No. 2 (2024): AUSTENIT: October 2024
Publisher : Politeknik Negeri Sriwijaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53893/austenit.v16i2.8886

Abstract

The design concept is used for the development of natural plant fiber extractors as raw materials for making natural fiber composites. The extractor is a tool used to extract natural plant fibers which are expected to produce natural fibers as raw materials for making natural fiber composites. In the previous tool, there are still several shortcomings that can be redeveloped, both for the sake of the tool itself and in terms of the fiber produced. In this journal, it is focused on making design concepts before the development of the extractor tool, including identifying problems in previous tools, determining the functional structure, finding solutions to existing problems, determining development specifications on the tool and also evaluating from the technical and economic side. In the process of this design concept, There are several things that are highlighted in the previous tools to be developed, including the mobility of the tool, the quality and quantity of fiber produced, production time and safety aspects and also environmentally friendly. Thus, in the end, all of it will be narrowed down to the choice of specifications needed to support this with the consideration of the objective tree.
ANALISIS PARAMETER MESIN LASER TUBE CUTTING TERHADAP SURFACE ROUGHNESS PADA SQUARE PIPE ST 37 MENGGUNAKAN TAGUCHI METHOD Rachman, Farizi; Wardani, Lintang Aditya; Sidi, Pranoto; Setiawan, Tri Andi; Hamzah, Fais; Maulana, Danis
AUSTENIT Vol. 16 No. 2 (2024): AUSTENIT: October 2024
Publisher : Politeknik Negeri Sriwijaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53893/austenit.v16i2.9160

Abstract

Parameter optimization is a technique used in the manufacturing process to create products with optimal quality. The research aims to find the optimal settings in the laser tube cutting machine so that the surface of the square pipe ST 37 becomes smoother and flatter. The settings to be changed are laser focal point, gas pressure, nozzle distance and laser power. This research uses Taguchi method with L9 (34) orthogonal matrix to analyze the experimental results. With each parameter having 3 levels according to the orthogonal matrix, the experiment was conducted 9 times with 3 replications to make the results more valid. In the research results obtained the most optimal combination of parameters on the laser tube cutting machine on the response of the cutting rate is with a combination of focus point parameters at level 1 of 0 mm, gas pressure at level 1 of 0.6 bar, and laser power parameters at level 1 of 1800 W.  
ANALISIS DAYA SERAP AIR DAN KEKUATAN BENDING KOMPOSIT SERBUK LIMBAH GERGAJI KAYU INDUSTRI JUKUNG Saputra, Andrian; Seprianto, Dicky; Mulyadi
AUSTENIT Vol. 16 No. 2 (2024): AUSTENIT: October 2024
Publisher : Politeknik Negeri Sriwijaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53893/austenit.v16i2.9456

Abstract

The purpose of the study was to determine the parameters of water absorption and bending strength, with variations in mesh size and volume of sawdust. The powder particles used were 20 mesh and 80 mesh with 70% and 80% wood powder volume variations. Bending test specimens were made using ASTM D790-02 standard and water absorption using SNI 03-2105-2006 standard. The Water Absorbency value is best in specimen BX (70% sawdust, 80 mesh) with a water absorption addition value of 0.43% and the lowest value in variation AY (80% sawdust, 20 mesh) of 0.76%. From the Anova test results, the value of Fhitung mesh size and Fhitug volume of sawdust Fhitung ˃ Ftabel = (Ha) which means it has an effect. Water absorption is influenced by mesh size by 35.59% and wood powder volume by 59.88%.The highest flexural strength value in specimen BX (70% sawdust, 80 mesh) with a flexural strength value of 59.34 MPa and the lowest value in variation BY (80% sawdust, 80 mesh) of 33.37 MPa. From the Anova test results, the value of Fhitung wood powder volume Fhitung ˃ Ftabel = (Ha) which means it has an effect. While the mesh size is Fhitung < Ftabel = (H0) which means there is un effect. Flexural strength is influenced by mesh size by 2.60% and wood powder volume by 83.05%.
POTENSI PERFOMA PENDINGINAN MODUL TERMOELEKTRIK TEC1-12710 DAN TEC1-12715 SR DENGAN METODA OPTIMASI PENDINGINAN SISI PANAS MENGGUNAKAN BEBERAPA JENIS PENUKAR KALOR Kurniasetiawati, Annisa Syafitri; Prasetyo, Bowo Yuli
AUSTENIT Vol. 16 No. 2 (2024): AUSTENIT: October 2024
Publisher : Politeknik Negeri Sriwijaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53893/austenit.v16i2.9470

Abstract

Thermoelectric module is a mature technology that have been used in cooling applications such as special product storage cabins and cooling electronic products. Compared to the conventional technology (vapor compression systems), thermoelectric modules offer many advantages. However, in terms of cooling performance, particularly for large cooling capacities (>100Watt), thermoelectric modules still lag the conventional technology. One method that can be used to improve the cooling performance of thermoelectric modules is cooling the hot side of the module using a heat exchanger. In this study, experiments will be carried out on the TEC1-12710 and TEC1-12715 SR modules which alternately combined with five types of heat exchangers on the hot side of the module, connected by thermal paste. The types of heat exchangers used are Square HE, Round HE, Two-Pipe HE, Four-Pipe HE, and Liquid-Cooler HE. The experiments are carried out with operating voltage variations of 12V, 9V and 6V for each thermoelectric module. The data analysis results found that the best COP value was obtained by the TEC1-12715 SR thermoelectric module with the Round type Heat Exchanger of 0.767 at a voltage of 6V. For the TEC1-12710 thermoelectric module, the highest COP value was also obtained when the module was paired with a Round type Heat Exchanger at a voltage of 6V, with a value of 0.620. Additionally, the highest heat absorption value for both thermoelectric modules was obtained at a voltage of 12V using the Round type heat exchanger, namely 19.61 Watts (TEC1-12710) and 26.98 Watts (TEC1-12715 SR), respectively.

Page 1 of 1 | Total Record : 5


Filter by Year

2024 2024


Filter By Issues
All Issue Vol. 17 No. 1 (2025): AUSTENIT: April 2025 Vol. 16 No. 2 (2024): AUSTENIT: October 2024 Vol. 16 No. 1 (2024): AUSTENIT: April 2024 Vol. 15 No. 2 (2023): AUSTENIT: October 2023 Vol. 15 No. 1 (2023): AUSTENIT: April 2023 Vol. 14 No. 2 (2022): AUSTENIT: October 2022 Vol. 14 No. 1 (2022): AUSTENIT: April 2022 Vol. 13 No. 2 (2021): AUSTENIT: Oktober 2021 Vol. 13 No. 1 (2021): AUSTENIT: April 2021 Vol. 12 No. 1 (2020): AUSTENIT 12012020 Vol. 12 No. 2 (2020): AUSTENIT: Oktober 2020 Vol. 12 No. 1 (2020): AUSTENIT: April 2020 Vol. 11 No. 2 (2019): AUSTENIT: Oktober 2019 Vol. 11 No. 1 (2019): AUSTENIT: April 2019 Vol. 10 No. 2 (2018): AUSTENIT: Oktober 2018 Vol. 10 No. 1 (2018): AUSTENIT: April 2018 Vol. 9 No. 2 (2017): AUSTENIT: Oktober 2017 Vol. 9 No. 1 (2017): AUSTENIT: April 2017 Vol. 8 No. 2 (2016): AUSTENIT: Oktober 2016 Vol. 8 No. 1 (2016): AUSTENIT: April 2016 Vol. 7 No. 2 (2015): AUSTENIT: Oktober 2015 Vol. 7 No. 1 (2015): AUSTENIT: April 2015 Vol. 6 No. 2 (2014): AUSTENIT: Oktober 2014 Vol. 6 No. 1 (2014): AUSTENIT: April 2014 Vol. 5 No. 2 (2013): AUSTENIT: Oktober 2013 Vol. 5 No. 1 (2013): AUSTENIT: April 2013 Vol. 4 No. 02 (2012): AUSTENIT: Oktober 2012 Vol. 4 No. 01 (2012): AUSTENIT: April 2012 Vol. 3 No. 02 (2011): AUSTENIT: Oktober 2011 Vol. 3 No. 01 (2011): AUSTENIT: April 2011 Vol. 2 No. 02 (2010): AUSTENIT: Oktober 2010 Vol. 2 No. 01 (2010): AUSTENIT: April 2010 Vol. 1 No. 02 (2009): AUSTENIT: Oktober 2009 Vol. 1 No. 01 (2009): AUSTENIT: April 2009 More Issue