cover
Contact Name
Sachnaz Desta Oktarina
Contact Email
sachnazdes@apps.ipb.ac.id
Phone
-
Journal Mail Official
ijsa@apps.ipb.ac.id
Editorial Address
sachnazdes@apps.ipb.ac.id
Location
Kota bogor,
Jawa barat
INDONESIA
Indonesian Journal of Statistics and Its Applications
ISSN : 25990802     EISSN : 25990802     DOI : -
Core Subject : Science, Education,
Indonesian Journal of Statistics and Its Applications (eISSN:2599-0802) (formerly named Forum Statistika dan Komputasi), established since 2017, publishes scientific papers in the area of statistical science and the applications. The published papers should be research papers with, but not limited to, the following topics: experimental design and analysis, survey methods and analysis, operation research, data mining, statistical modeling, computational statistics, time series and econometrics, and statistics education. All papers were reviewed by peer reviewers consisting of experts and academicians across universities and agencies
Articles 192 Documents
THE BIVARIATE EXTENSION OF AMOROSO DISTRIBUTION David Sam Jayakumar; A Sulthan; W Samuel
Indonesian Journal of Statistics and Applications Vol 4 No 2 (2020)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v4i2.571

Abstract

This paper introduces the bivariate extension of the amoroso distribution and its density function is expressed in terms of hyper-geometric function. The standard amoroso distribution, cumulative distribution functions, conditional distributions, and its moments are also derived. The Product moments, Co-variance, correlations, and Shannon’s differential entropy are also shown. Moreover, the generating functions such as moment, Cumulant, Characteristic functions are expressed in Fox-wright function, and the Survival, hazard, and Cumulative hazard functions are also computed. The special cases of the bivariate amoroso distribution are also discussed and nearly 780 bivariate mixtures of distributions can be derived. Finally, the two-dimensional probability surfaces are visualized for the selected special cases and we also showed the estimation of parameters by the method of maximum likelihood approach, and the constrained maximum likelihood approach is also computed by using Non-linear Programming with a numerical application
ROBUST SPATIAL REGRESSION MODEL ON ORIGINAL LOCAL GOVERNMENT REVENUE IN JAVA 2017 Winda Chairani Mastuti; Anik Djuraidah; Erfiani Erfiani
Indonesian Journal of Statistics and Applications Vol 4 No 1 (2020)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v4i1.573

Abstract

Spatial regression measures the relationship between response and explanatory variables in the regression model considering spatial effects. Detecting and accommodating outliers is an important step in the regression analysis. Several methods can detect outliers in spatial regression. One of these methods is generating a score test statistics to identify outliers in the spatial autoregressive (SAR) model. This research applies a robust spatial autoregressive (RSAR) model with S- estimator to the Original Local Government Revenue (OLGR) data. The RSAR model with the 4-nearest neighbor weighting matrix is the best model produced in this study. The coefficient of the RSAR model gives a more relevant result. Median absolute deviation (MdAD) and median absolute percentage error (MdAPE) values ​​in the RSAR model with 4-nearest neighbor give smaller results than the SAR model.
PENGEMBANGAN ANALISIS GEROMBOL BERHIRARKI DENGAN KETERGANTUNGAN SPASIAL PADA INDIKATOR MAKRO SOSIAL EKONOMI DI KABUPATEN/KOTA PROVINSI SULAWESI TENGAH Iman Setiawan; Nur’eni Nur’eni; Sritasarwati Putran
Indonesian Journal of Statistics and Applications Vol 4 No 1 (2020)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v4i1.582

Abstract

This paper develops how the hierarchical clustering analysis uses multivariate variables with spatial dependence on macro social-economic indicator data in Regency/City Central Sulawesi Province. Macro social-economic indicator data used in this paper are the number of criminal cases, per capita expenditure, population density, and Human Development Index of Regency/City of Central Sulawesi Province in 2018. To answer this question, Macro social-economic indicator data was reduced to a new variable using principal component analysis. The new variable was used to identify spatial dependency using the Moran index test. Spatial weight, that meets the Moran index test on the alternative hypothesis (there is a spatial dependency between locations), was used as the spatial dependency distance. Cluster analysis using two distance including variable and spatial dependency distance. The results showed that neighboring Regency/City are in the same cluster (spatial dependency occasion). So that there are five clusters Regency/City in Central Sulawesi Province.
PENGEMBANGAN MODEL PERAMALAN SPACE TIME: Studi Kasus: Data Produksi Padi di Sulawesi Selatan Evita Choiriyah; Utami Dyah Syafitri; I Made Sumertajaya
Indonesian Journal of Statistics and Applications Vol 4 No 4 (2020)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v4i4.584

Abstract

Based on Statistics Indonesia (BPS) South Sulawesi is one of the national rice granary province. There are three regions, Bone, Wajo, and Gowa that contribute to the high production of rice in South Sulawesi. However, rice production in Indonesia especially South Sulawesi often declined sharply due to climate disturbances, such as drought or flood. Therefore, Indonesia's government should provide a forecast related to rice production accurately to ensure the availability of food stocks as an integral part of national food security. Moreover, rainfall as climate factors should be included to produce an appropriate forecast model that can be expected to generate the estimation of the rice production data accurately. This research focused on comparing the forecasting model of rice production data by SARIMAX and GSTARIMAX model and used rainfall as explanatory variables. The SARIMAX model is a multivariate time series forecasting model that can accommodate the seasonal components. In contrast, the GSTARIMAX model, which is equipped with an inverse distance spatial weight matrix, is a space-time forecasting model that involves interconnection between locations. The GSTARIMAX model built for rice production forecasting in Bone, Wajo, and Gowa is GSTARIMAX (2,1,0)(0,1,1)12. Rainfall as an explanatory variable was significant at each location. The comparison of rice production forecasting models for the next six periods in four locations showed that the GSTARIMAX model provided more stable forecasting results than the SARIMAX model, viewed from the average MAPE value of the GSTARIMAX mode in each location.
PENGGEROMBOLAN SUBSEKTOR INDUSTRI BERDASARKAN PERKEMBANGAN INDEKS PRODUKSI MENGGUNAKAN PREDICTION-BASED CLUSTERING Agustin Faradila; Utami Dyah Syafitri; I Made Sumertajaya
Indonesian Journal of Statistics and Applications Vol 4 No 3 (2020)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v4i3.585

Abstract

Statistics Indonesia (BPS) noted that there has been a decrease in the contribution of the industrial sector to the national GDP even though it had provided a significant multiplier effect on national economic growth. Therefore, it is necessary to cluster the industrial subsector based on its growth patterns so that the optimization of development results can be achieved. Prediction-based clustering is part of time series clustering (TSclust) which aims to form clusters based on prediction characteristics so that it can be used to choose a cluster that will become a mainstay industry in the future. This study focused on applying prediction-based clustering in the large and medium industrial sub-sector for a prediction period of 1 month, 1 quarter, and 1 semester. The data used in this study was the production index data from January 2010 to December 2018. The results showed that the best cluster for 1 month consisted of 5 groups, for 1 quarter consisted of 4 groups and for 1 semester consisted of 2 groups. Thus, it was concluded that the food industry; leather industry, leather goods, and footwear; and the pharmaceutical industry, chemical drug products, and traditional medicine could be chosen to be the mainstay industry in the future.
METODE ANALISIS DISKRIMINAN KUADRAT TERKECIL PARSIAL UNTUK KLASIFIKASI SEGMEN LOYALITAS KONSUMEN SUSU PERTUMBUHAN Herdina Kuswari; Farit Mochamad Afendi; Khairil Anwar Notodiputro
Indonesian Journal of Statistics and Applications Vol 4 No 2 (2020)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v4i2.586

Abstract

Consumer segmentation is the process of dividing consumers into different segments based on consumer characteristics, making it easier for companies to develop marketing strategies. The segmentation is carried out based on consumer loyalty using the RFM (Recency, Frequency, Monetary) approach a number of 7753 members of a nutritional product loyalty program is considered in the analysis. Partial least square discriminant analysis classification modeling is built using the results of consumer segmentation being the a response variable. The model is not good enough based on the AUC (Area Under Curve) value of the ROC (Relative Operating Characteristic) curve that quite low for each segment. The explanatory variables that have high contribution to the model is X5, X9, and X2 with VIP (Variable Importance in the Projection) values more than 1.
VARIABEL-VARIABEL YANG MEMENGARUHI WAKTU HINGGA SESEORANG MENGGUNAKAN NARKOBA PERTAMA KALI MENGGUNAKAN ANALISIS SURVIVAL Widya Larasati; Mohammad Dokhi
Indonesian Journal of Statistics and Applications Vol 4 No 2 (2020)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v4i2.587

Abstract

Indonesia is currently in a state of emergency of drugs because of its increasing abuse rate and its spread is widespread not only in big cities. The average of first drug use is in adolescence. This study aims to determine the variables that influence the time for someone to use drugs for the first time and the acceleration factor. The data analyzed by using Survival Analysis with the frailty variable is secondary data from BNN and Puslitkes UI survey. The result is, the average of first drug use in eight towns/districts of research locus was 18-year. Smoking, alcohol consumption, the environment, and gender are significant variables that influence the first drug use. A person who has smoked, use alcohol, lived in a drug-exposed environment, and male sex will have a resilient time not to use drugs faster with the acceleration factor of each variable are 0.3184, 0.3985, 0.3501, and 0.6773. The results conclude that regulations on cigarettes and alcohol need to be revisited since both influence drug initiation. In addition, prevention programs need to focus more on adolescents and young children so that they have strong self-defense from the influence of a drug-exposed environment.
COMPARISON OF K-MEANS CLUSTERING METHOD AND K-MEDOIDS ON TWITTER DATA Cahyani Oktarina; Khairil Anwar Notodiputro; Indahwati Indahwati
Indonesian Journal of Statistics and Applications Vol 4 No 1 (2020)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v4i1.599

Abstract

The presidential election is one of the political events that occur in Indonesia once in five years. Public satisfaction and dissatisfaction with political issues have led to an increase in the number of political opinion tweets. The purpose of this study is to examine the performance of the k-means and k-medoids method in the Twitter data and to tweet about the presidential election in 2019. The data used in this study are primary data taken from Muhyi's research, then mining the text against data obtained. Because this data has been processed by Muhyi to analyze the electability of the 2019 presidential candidate pairs, for this journal needs a preprocessing was carried out to analyze the tendency of tweets to side with the candidate pairs of one or two. The difference in the pre-processing of this research with previous research is that there is a cleaning of duplicate data and normalizing. The results of this study indicate that the optimal number of clusters resulting from the k-means method and the k-medoid method are different.
STUDY ON EMD METHOD FOR PREDICTING THE PRICE OF CURLY RED CHILI IN INDONESIA Zilrahmi Zilrahmi; Hari Wijayanto; Farit M Afendi; Rizal Bakri
Indonesian Journal of Statistics and Applications Vol 4 No 2 (2020)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v4i2.600

Abstract

The fluctuations of curly red chili price affect the inflation rate in Indonesia. So that, the basic characteristics of price movement and correctly prediction for curly red chili price become concern in various studies. Empirical Mode Decomposition (EMD) method helps to examine behavioral characteristics of curly red chili prices in Indonesia easily. Ensemble EMD (EEMD) and modified EEMD are the decomposition method of time series which is development of EMD method. The decomposed data with EMD methods can also used for price forecast. The forecasting with ARIMA and trend polynomial performed to assess the effect of decomposition with EMD methods for forecast stability of curly red chili price in Indonesia under various conditions. The results show the most influence factor for price fluctuation of curly red chili in Indonesia is season and growing season. In this case, the ability of a decomposition method to produce the actual components that describe the pattern of data signals affect the accuracy of the predicted value obtained using the model. The predicted value using the decomposed data by modified EEMD always better than EEMD on the overall condition.
IMPROVISASI MODEL ARIMAX-ANFIS DENGAN VARIASI KALENDER UNTUK PREDIKSI TOTAL TRANSAKSI NON-TUNAI Muhammad Luthfi Setiarno Putera
Indonesian Journal of Statistics and Applications Vol 4 No 2 (2020)
Publisher : Departemen Statistika, IPB University dengan Forum Perguruan Tinggi Statistika (FORSTAT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v4i2.603

Abstract

Developed information technology boosts interest to use non-cash payment media in many areas. Following the high usage of a non-cash scheme in many payment transactions recently, the objective of this work is two-fold that is to predict the total of a non-cash transaction by using various time-series models and to compare the forecasting accuracy of those models. As a country with a mostly dense Moslem population, plenty of economical activities are arguably influenced by the Islamic calendar effect. Therefore the models being compared are ARIMA, ARIMA with Exogenous (ARIMAX), and a hybrid between ARIMAX and Adaptive Neuro-Fuzzy Inference Systems (ANFIS). By taking such calendar variation into account, the result shows that ARIMAX-ANFIS is the best method in predicting non-cash transactions since it produces lower MAPE. It is indicated that non-cash transaction increases significantly ahead of Ied Fitr occurrence and hits the peak in December. It demonstrates that the hybrid model can improve the accuracy performance of prediction.

Page 7 of 20 | Total Record : 192