cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota medan,
Sumatera utara
INDONESIA
Jurnal Teknik Kimia USU
ISSN : -     EISSN : -     DOI : -
Arjuna Subject : -
Articles 349 Documents
JTK USU Journal Management
Jurnal Teknik Kimia USU Vol 4, No 2 (2015)
Publisher : Universitas Sumatera Utara

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (6.381 KB) | DOI: 10.32734/jutek.v4i2.9954

Abstract

JTK USU
PEMBUATAN BIOETANOL DARI TEPUNG AMPAS TEBU MELALUI PROSES HIDROLISIS TERMAL DAN FERMENTASI: PENGARUH PH, JENIS RAGI, DAN WAKTU FERMENTASI Irvan, Popphy Prawati, Bambang Trisakti
Jurnal Teknik Kimia USU Vol 4, No 2 (2015)
Publisher : Universitas Sumatera Utara

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (206.195 KB) | DOI: 10.32734/jutek.v4i2.10166

Abstract

Bioethanol is ethanol, which made from starch, glucose, or cellulose of plants. In this research, it has been made from cellulose of sugarcane baggase. This research was conducted to study about the effect of pH, yeast type and the duration of fermentation to yield’s ethanol. The main processes in this research were thermal hydrolysis by liquid hot water (LHW) method, fermentation by using  Saccharomyces cerevisiae and purification by vacuum distillation. The variables in this research were pH 4; 4,5; and 5; baker’s yeast and fermented glutinous cassava; and the duration of fermentation were 2, 4, 6, 8 and 10 days. Based on the analysis of the yield, the volume of bioethanol is 23 mL with 0,95 g/ml density and 161,59 kkal/kg heat value as the best yield, under the condition of  pH 5 and 4 days of the duration of fermentation using baker’s yeast.
EKSTRAKSI MULTI TAHAP KURKUMIN DARI TEMULAWAK (Curcuma xanthorriza Roxb.) MENGGUNAKAN PELARUT ETANOL Dwimas Anggoro, Rajian Sobri Rezki, Siswarni MZ
Jurnal Teknik Kimia USU Vol 4, No 2 (2015)
Publisher : Universitas Sumatera Utara

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (315.283 KB) | DOI: 10.32734/jutek.v4i2.10167

Abstract

Curcumin is a pigment in turmeric (Curcuma xanthorriza Roxb.), which has an orange-yellow crystal appearance, and commonly being used as a colouring agent. Extraction method which is used in extracting curcumin from turmeric is one stage extraction. This research will study a multi stage extraction of curcumin from turmeric. The purposes of this research is to find the best condition in extracting curcumin using multi stages extraction method to increase the efficiency rate in curcumin extraction. This research used ethanol as a solvent, and effect from variables such as extraction time, solvent concentration, and number of extraction stages are observed. Extraction times are 60 minutes, 120 minutes, and 180 minutes. Variations of ethanol concentration are 50%, 70%, and 96%. Stage numbers of extraction are two stages extraction and three stages extraction. Extracts of curcumin are examined with qualitative analysis and quantitative analysis. The best condition of multi stages curcumin extraction is determined based on yield and content of curcumin. The maximum yield obtained in this study was 16,35 % with conditions 180 minutes extraction time, 96% ethanol concentration, and three stages extraction. The highest content of curcumin obtained is 2,617% with conditions 180 minutes extraction time, 96% ethanol concentration, and three stages extraction. Content means a fraction of yield. These results show that increase in the extraction time, the solvent concentration and the stage numbers of extraction will increase the yield and content of curcumin.
EKSTRAKSI MULTI TAHAP KURKUMIN DARI KUNYIT (Curcuma domestica Valet) MENGGUNAKAN PELARUT ETANOL Rajian Sobri Rezki, Dwimas Anggoro, Siswarni MZ
Jurnal Teknik Kimia USU Vol 4, No 3 (2015)
Publisher : Universitas Sumatera Utara

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (352.144 KB) | DOI: 10.32734/jutek.v4i3.10169

Abstract

Curcumin is a pigment in Curcuma domestica Valet, which has an orange-yellow crystal appearance, and commonly being used as a colouring agent. Extraction method which is used in extracting curcumin from Curcuma domestica Valet is one stage extraction. This research studied a multi stages extraction of curcumin from Curcuma domestica Valet. The purposes of this research is to find the best condition in extracting curcumin using multi stages extraction method, to increase the efficiency rate in curcumin extraction. This research used ethanol as a solvent, and effect from variables such as extraction time, solvent concentration, and number of extraction stages are observed. Extraction times are 60 minutes, 120 minutes, and 180 minutes. Variations of ethanol concentration are 50%, 70%, and 96%. Stage numbers of extraction are two stages extraction and three stages extraction. Extracts of curcumin are examined with qualitative analysis and quantitative analysis. The best condition of multi stages curcumin extraction is determined based on yield and content of curcumin. The maximum yield obtained in this study was 12% with conditions 180 minutes extraction time, 96% ethanol concentration, and two stages extraction. The highest content of curcumin obtained is 16% with conditions 180 minutes extraction time, 96% ethanol concentration, and three stages extraction. Content means a fraction of yield. These results show that increase in extraction time, solvent concentration, and stage numbers of extraction  will increase the yield and content of curcumin extracted from Curcuma domestica Valet.
PENGARUH KONSENTRASI PEREKAT TEPUNG TAPIOKA DAN PENAMBAHAN KAPUR DALAM PEMBUATAN BRIKET ARANG BERBAHAN BAKU PELEPAH AREN (Arenga pinnata) Julham Prasetya Pane, Erwin Junary, Netti Herlina
Jurnal Teknik Kimia USU Vol 4, No 2 (2015)
Publisher : Universitas Sumatera Utara

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (407.279 KB) | DOI: 10.32734/jutek.v4i2.10202

Abstract

The demand of renewable energy resources has been increasing. Briquette is one of the alternative energy resource which can be produced from utilization of biomass. This research aims to obtain a briquette from sugar palm frond, to obtain the effect of adhesive concentration of cassava starch and addition of lime on the quality of briquettes. This research used the batch method. Research variabels are the adhesive concentration of cassava starch in 0%, 10%, 20% and 30% (w/w) and the addition of lime in 0%, 1%, 3% and 5% (w/w) based on the weight of char powder. General materials are sugar palm (Arenga pinnata) frond, cassava starch and lime, and the general tools are furnace, briquette printer, oven, moisture analyzer, universal testing machine and bomb calorimeter. Briquetting process was started with sugar palm fronds preparation then they’re carbonized at 350 oC for 2 hours. Product of carbonization as a charcoal which is added by a cassava starch adhesive and lime then they’re printed or shaped and dried to be a briquette. Analysis used is the proximate analysis of the test parameters moisture content, ash content, volatile combustion matter content, carbon content, calorific value and compressive strength. The best briquette is with adhesive concentration in 0% and addition of lime in 5% with the calorific value 6502,379 cal/g, 45,56% fixed carbon, 6,44% moisture, 18,00% ash, 30,00% volatile combustion matter and 59,141 kg/cm2 compressive strength.
PENGARUH SUHU DAN WAKTU KARBONISASI TERHADAP NILAI KALOR DAN KARAKTERISTIK PADA PEMBUATAN BIOARANG BERBAHAN BAKU PELEPAH AREN (Arenga pinnata) Erwin Junary, Julham Prasetya Pane, Netti Herlina
Jurnal Teknik Kimia USU Vol 4, No 2 (2015)
Publisher : Universitas Sumatera Utara

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (409.378 KB) | DOI: 10.32734/jutek.v4i2.10275

Abstract

The availability of the petroleum fuels that deprived from fossil is depleted with the increase of human population. The challenge for this fuel shortage crisis can certainly be anticipated with the manufacture of fuels deprived from renewable biomass. The study of this research is to create a biocharcoal deprived from sugar palm (Arenga pinnata) with the optimum carbonization time and temperature in order to obtain a biocharcoal with the highest calorific value. Biocharcoal is a charcoal created from biomass. The study of the determination of the optimum conditions for the manufacture of biocharcoal from sugar palm (Arenga pinnata) has a temperature variable of 300, 350, 400, 450 and 500 0C and time variable of 60, 90 and 120 minutes. Sugar palm was first cut into a small pieces and dried up under the sun and then put into a furnace to carbonate it according to the predetermined variables. The product from furnace was then put inside a desicator to cool it off for 30 minutes and then analyze it with moisture content test, ash content test, volatile matter content test, carbon content test and calorific value test. The best result was obtained at the temperature of 350 0C and 120 minutes of carbonization with the calorific value of 8611,2581 cal/gr, moisture content of %, ash content of %, volatile matter content of % and carbon content of %. Based of the calorific value obtained, the result shows that sugar palm (Arenga pinnata) biocharcoal could be utilize as an renewable alternative source fuels
PEMBUATAN BIOETANOL DARI TEPUNG AMPAS TEBU MELALUI PROSES HIDROLISIS TERMAL DAN FERMENTASI SERTA RECYCLE VINASSE (PENGARUH KONSENTRASI TEPUNG AMPAS TEBU, SUHU DAN WAKTU HIDROLISIS) Bambang Trisakti, Yustina br Silitonga, Irvan
Jurnal Teknik Kimia USU Vol 4, No 3 (2015)
Publisher : Universitas Sumatera Utara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32734/jutek.v4i3.10318

Abstract

The purpose of this research are to study the effect of sugarcane bagasse powder concentration, hydrolysis temperature and time on the yield of glucose and the level of glucose by recycle vinasse process. Raw sugarcane bagasse as primary material was obtained from sugarcane juice shop. Observed variabels were concentration of sugarcane bagasse, hydrolysis time and temperature. Sugarcane bagasse is powdered by blender and then  mixed with aquadest (2,94; 3,85; 4,76%) and hydrolized in the hydrolysis tank. The hydrolysis process occured at 1, 1,5 and 2 hours and temperature 135, 150 and 165°C. The hydrolysis products were tested for its glucose, lignin and cellulose composition. After that, the product was fermented in order to produce bioethanol. The fermented product was filtered for its vinasse and it will be used as the feed of hydrolysis recycle process. Result showed that yield of glucose increases as the increase  of sugarcane bagasse powder concentration, hydrolysis time and temperature. But, yield of glucose increases from 1 until 1,5 hour of hydrolysis time and then decreases from 1,5 to 2 hour of hydrolysis time. The highest yield of glucose (31,022%) was obtained at concentration 2,94%, 165 °C and 2 hours of hydrolysis time. Lignin and cellulose level fluctuated as the increasing of hydrolysis temperature. This might be caused by the non-uniform composition by the raw materials.
PENGARUH TEMPERATUR DALAM PEMBUATAN KARBON AKTIF DARI KULIT SALAK (SALACCA SUMATRANA) DENGAN AKTIFATOR SENG KLORIDA (ZnCl2) Muhammad Turmuzi, Ardiano Oktavianus Sahat Tua, Fatimah
Jurnal Teknik Kimia USU Vol 4, No 2 (2015)
Publisher : Universitas Sumatera Utara

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (397.04 KB) | DOI: 10.32734/jutek.v4i2.10470

Abstract

Activated carbon can be made of organic or anorganic materials. Salak peel is a potential organic material as activated carbon. This research aimed to understand the effect of temperature in activated carbon with chemical activation ZnCl2 production from salak peel. The method included preparation of raw material, chemical activation, pyrolysis and iodine value test. The ratio of ZnCl2 is1:1 g/g, the activation time is 2 hours and the acivation temperature variation is 400, 450, 500, 550 and 600 oC. Results showed that the iodine value increased and yield decreased as the increasing of activation temperature. The highest iodine value and yield were achieved at 600°C and 400°C, the values were 694 mg/g and 30,93%.
JTK USU Journal Management
Jurnal Teknik Kimia USU Vol 4, No 3 (2015)
Publisher : Universitas Sumatera Utara

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (6.381 KB) | DOI: 10.32734/jutek.v4i3.10491

Abstract

JTK USU
PENGARUH SUHU ADSORPSI DAN JUMLAH PENAMBAHAN KARBON AKTIF TERHADAP KECERAHAN SURFAKTAN DECYL POLIGLIKOSIDA DARI D-GLUKOSA DAN DEKANOL Walad Wirawan, Rap Leanon, Zuhrina Masyithah
Jurnal Teknik Kimia USU Vol 4, No 3 (2015)
Publisher : Universitas Sumatera Utara

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (272.207 KB) | DOI: 10.32734/jutek.v4i3.10494

Abstract

Alkyl plyglycosides (APG) is a nonionic surfactant which is environmentally friendly. Carbohidrate source as APG’s raw material supplied the hydrophilic group, and fatty alcohol acted as hydrophobic group. Some undesirable compounds formed during the APG synthesis and caused dark color. In direct synthesis, D-glucose reacts directly with decanol in molar ratio of D-glucose:decanol is 1:5 and 0,5 % of HCl as catalist based on weight of D-glucose for 1 hour at reaction temperature about 95 oC. And then the solution is neutralized with NaOH 50 % on pH 8-10. Added activated carbon with variation 1, 3, 5, 7, and 9 % based on weight of solution at adsorption temperature with variation 30, 40, dan 50 oC, then filtrate and distilate the solution at vacuum condition. Product is analized using spectroscopy fourier transform infrared (FT-IR) and spectroscopy UV-Vis. The highest percent of transmittance is about 44,90 % obtained at adsorption temperature 50 oC and amount of activated carbon 3 %.