cover
Contact Name
Lalu Muhamad Jaelani
Contact Email
lmjaelani@its.ac.id
Phone
+62819634394
Journal Mail Official
lmjaelani@its.ac.id
Editorial Address
Department of Geomatics Engineering, Faculty of Civil, Planning, and Geo-engineering; Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia. Phone 031-5929486, 031-5929487
Location
Kota surabaya,
Jawa timur
INDONESIA
Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital
ISSN : 14128098     EISSN : 2549726X     DOI : https://doi.org/10.12962/inderaja
Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital (the Journal of Remote Sensing and Digital Image Processing) is a scientific journal dedicated to publishing research and development in technology, data, and the utilization of remote sensing. The journal encompasses the scope of remote sensing as outlined in Law No. 21 of 2013 on Space Affairs, which includes: (1) data acquisition; (2) data processing; (3) data storage and distribution; (4) utilization and dissemination of information. The journal was first published by the Indonesian National Institute of Aeronautics and Space (LAPAN) in June 2004 and received its initial accreditation as a "B" Accredited Scientific Periodical Magazine from LIPI in 2012. In 2015, the journal successfully maintained its "B" Accredited status. From 2018 to 2021, the journal was accredited as SINTA 2 with certificate number 21/E/KPT/2018. Starting from March 2025, the journal has been managed by the Institut Teknologi Sepuluh Nopember (ITS), in collaboration with the Geoinformatics Research Center of BRIN and the Indonesian Society for Remote Sensing (ISRS/MAPIN). The journal encompasses the scope of remote sensing as outlined in Law No. 21 of 2013 on Space Affairs, which includes: data acquisition; data processing; data storage and distribution; utilization and dissemination of information.
Articles 5 Documents
Search results for , issue "Vol. 14 No. 2 (2017)" : 5 Documents clear
ANALISIS PERUBAHAN GARIS PANTAI UJUNG PANGKAH DENGAN MENGGUNAKAN METODE EDGE DETECTION DAN NORMALIZED DIFFERENCE WATER INDEX Anggraini, Nanin; Marpaung, Sartono; Hartuti, Maryani
Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital Vol. 14 No. 2 (2017)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.pjpdcd.1017.v14.a2545

Abstract

Besides to the effects from tidal, coastline position changed due to abrasion and accretion. Therefore, it is necessary to detect the position of coastline, one of them by utilizing Landsat data by using edge detection and NDWI filter. Edge detection is a mathematical method that aims to identify a point on a digital image based on the brightness level. Edge detection is used because it is very good to present the appearance of a very varied object on the image so it can be distinguished easily. NDWI is able to separate land and water clearly, making it easier for coastline analysis. This study aimed to detect coastline changes in Ujung Pangkah of Gresik Regency caused by accretion and abrasion using edge detection and NDWI filters on temporal Landsat data (2000 and 2015). The data used in this research was Landsat 7 in 2000 and Landsat 8 in 2015. The results showed that the coastline of Ujung Pangkah Gresik underwent many changes due to accretion and abrasion. The accretion area reached 11,35 km² and abrasion 5,19 km² within 15 year period.
PENGARUH ASIMILASI DATA PENGINDERAAN JAUH (RADAR DAN SATELIT) PADA PREDIKSI CUACA NUMERIK UNTUK ESTIMASI CURAH HUJAN Paski, Jaka Anugrah Ivanda
Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital Vol. 14 No. 2 (2017)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.pjpdcd.1017.v14.a2642

Abstract

One of the main problems in numerical weather modeling was the inaccuracy of initial condition data (initial conditions). This study reinforced the influence of assimilation of remote sensing observation data on initial conditions for predictive numerical rainfall in BMKG radar area Tangerang (Province of Banten and DKI Jakarta) on January 24, 2016. The procedure applied to rainfall forecast was the Weather Research and Forecasting model (WRF) with a down-to-down multi-nesting technique from Global Forecast System (GFS) output, the model was assimilated to radar and satellite image observation data using WRF Data Assimilation (WRFDA) 3DVAR system. Data was used as preliminary data from surface observation data, EEC C-Band radar data, AMSU-A satellite sensor data and MHS sensors. The analysis was done qualitatively by looking at the measurement scale. Observation data was used to know rainfall data. The results of the study showed that producing rainfall predictions with different assimilation of data produced different predictions. In general, there were improvements in the rainfall predictions with assimilation of satellite data was showing the best results.
KLASIFIKASI MULTISKALA UNTUK PEMETAAN ZONA GEOMORFOLOGI DAN HABITAT BENTIK MENGGUNAKAN METODE OBIA DI PULAU PARI Anggoro, Ari; Siregar, Vincentius P.; Agus, Syamsul B.
Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital Vol. 14 No. 2 (2017)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.pjpdcd.1017.v14.a2622

Abstract

This study used multiscale classification and applied object-based image analysis (OBIA) for geomorphic zone and benthic habitats mapping in Pari islands. An optimized segmentation was performed to get optimum classification result. Classification methods for level 1 and 2 used contextual editing classification and for level 3 used support vector machines classifier. The results showed that overall accuracy for level 1 was 97% (reef level), level 2 was 87% (geomorphic zone), and level 3 was 75% (benthic habitats). Accuracy achieved by support vector machines classification was performed only in level 3 and optimum scale value achieved was 50 in compare with other scale values, i.e. 5, 25, 50, 75, 95. OBIA methods can be used as an alternative for geomorphic zone and benthic habitats map.
MODEL KOREKSI ATMOSFER CITRA LANDSAT-7 Muchsin, Fadila; Fibriawati, Liana; Pradhono, Kuncoro Adhi
Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital Vol. 14 No. 2 (2017)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.pjpdcd.1017.v14.a2595

Abstract

Three methods of atmospheric correction, Second Simulation of the Satellite Signal in the Solar Spectrum (6S), Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) and the model Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH), have been applied to the level 1T Landsat-7 image Jakarta area. The atmospheric corrected image is then compared with the TOA reflectance image. The results show that there is an improvement of the spectral pattern on the TOA reflectance image by the decrease of the reflectance value of each object by (1 - 11) % after the atmospheric correction of all models for visible bands (blue, green and red). In the NIR and SWIR bands there is an increase in the spectral value of about 1% to the TOA reflectance on all objects except wetland for the LEDAPS model. The percentage of the increase and the decrease in spectral values of 6S and FLAASH models have the same tendency. Analyzes were also performed on the NDVI values of each model, where NDVI values were relatively higher after atmospheric correction. The NDVI value of rice crop on FLAASH model is the same as 6S model that is equal to 0.95 and for wetland, it has the same value between FLAASH model and LEDAPS which is 0.23. NDVI value of entire scene for FLAASH model = 0.63, LEDAPS model = 0.56 and 6S model = 0.66. Before the atmospheric correction, the TOA is 0.45.
OPTIMASI PARAMETER DALAM KLASIFIKASI SPASIAL PENUTUP PENGGUNAAN LAHAN MENGGUNAKAN DATA SENTINEL SAR Chulafak, Galdita Aruba; Kushardono, Dony; Zylshal, Zylshal
Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital Vol. 14 No. 2 (2017)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.pjpdcd.1017.v14.a2746

Abstract

In this study, application of Sentinel-1 Synthetic Aperture Radar (SAR) data for the land use cover classification was investigated. The classification was implemented with supervised Neural Network classifier for Dual polarization (VH and VV) Sentinel-1 data using texture information of gray level co-occurance matrix (GLCM). The purpose of this study was to obtain the optimum parameters in the extraction of texture information of pixel window size, the orientation of neighboring relationships on the texture feature extraction, and the type of texture information feature used for the classification. The classification results showed that in the study area, the best accuracy obtained is 5 × 5 pixel window size, 00 orientation angle, and the use of entropy texture information as classification input. It was also found that more features texture information used as classification input can improve the accuracy, and with careful selection of appropriate texture information as classification input will give the best accuracy.

Page 1 of 1 | Total Record : 5