Claim Missing Document
Check
Articles

Found 8 Documents
Search

Identifikasi Gosong Karang Mengggunakan Citra Satelit Sentinel 2A (Studi Kasus: Perairan Pesisir Nias Utara) Purwanto, Anang Dwi; Prayogo, Teguh; Marpaung, Sartono
Jurnal Teknologi Lingkungan Vol. 21 No. 1 (2020)
Publisher : Center for Environmental Technology - Agency for Assessment and Application of Technology

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1895.207 KB) | DOI: 10.29122/jtl.v21i1.3769

Abstract

ABSTRACTThe waters of Northern Nias, North Sumatra Province have a great potential for natural resources, one of which is the reef which is often used as a fishing ground. This study aims to identify and monitor the distribution of coral reefs around the waters of Northern Nias. The location of study is limited by coordinates 97° 0'31'' - 97° 16'54'' E and 1° 29'2'' LU - 1° 6'24'' N. The study locations were grouped in 6 (six) areas including Mardika reef, Wunga reef, Mausi1 reef, Mausi2 reef, Tureloto reef and Senau reef. The data used were Sentinel 2A imagery acquisition on 19 September 2018 and field observations made on 6-12 September 2018. Data processing includes geometric correction, radiometric correction, water column correction and classification using pixel-based and object-based methods as well as by delineating on the image. One classification method will be chosen that is most suitable for the location of the reef. The results show Sentinel 2A was very helpful in mapping the distribution of coral reefs compared to direct observation in the field. The use of image classification method rightly is very helpful in distinguishing coral reef objects from surrounding objects. The estimated area of coral reefs was 1,793.20 ha with details of the Mardika reef 143.27 ha, Wunga reef 627.06 ha, Mausi1 reef 299.84 ha, Mausi2 reef 141.873 ha, Tureloto reef 244.73 ha, Senau reef 336.44 ha. The existence of coral reefs have a high potential as a fishing ground and a natural tourist attraction.Keywords: coral reefs, sentinel 2A, lyzenga 1978, image classification, Northern NiasABSTRAKPerairan Nias Utara yang terletak di Provinsi Sumatra Utara memiliki potensi kekayaan alam yang besar dimana salah satunya adalah gosong karang yang sering dijadikan lokasi penangkapan ikan oleh nelayan. Penelitian ini bertujuan untuk mengidentifikasi dan monitoring sebaran gosong karang di sekitar perairan Nias Utara. Lokasi penelitian dibatasi dengan koordinat 97°0’31’’ - 97°16’54’’ BT dan 1°29’2’’LU – 1°6’24’’  LU. Untuk mempermudah dalam pengolahan data maka lokasi kajian dikelompokkan dalam 6 (enam) kawasan diantaranya gosong Mardika, gosong Wunga, gosong Mausi1, gosong Mausi2, gosong Tureloto dan gosong Senau. Data yang digunakan adalah citra satelit Sentinel 2A hasil perekaman tanggal 19 September 2018 dan hasil pengamatan lapangan yang telah dilakukan pada tanggal 6 - 12 September 2018. Pengolahan data meliputi koreksi geometrik, koreksi radiometrik, koreksi kolom air dan klasifikasi menggunakan metode klasifikasi berbasis piksel dan berbasis objek serta deliniasi citra. Dari ketiga metode klasifikasi tersebut akan dipilih satu metode klasifikasi yang sesuai dengan lokasi gosong karang. Hasil penelitian menunjukkan citra Sentinel 2A sangat membantu dalam memetakan sebaran gosong karang dibandingkan dengan pengamatan langsung di lapangan. Pemilihan metode klasifikasi citra satelit yang tepat sangat membantu dalam membedakan objek gosong karang dengan objek di sekitarnya. Estimasi total luasan gosong karang di perairan Nias Utara adalah 1,793.20 ha dengan rincian luasan gosong karang Mardika 143.27 ha, gosong Wunga 627.06 ha, gosong Mausi1 299.84 ha, gosong Mausi2 141.873 ha, gosong Tureloto 244.73 ha, gosong Senau 336.44 ha. Keberadaan gosong karang memiliki potensi yang tinggi sebagai lokasi penangkapan ikan dan memiliki daya tarik sebagai tempat wisata alam.Kata kunci: gosong karang, sentinel 2A, lyzenga 1978, klasifikasi citra, Nias Utara
ANALYSIS OF POTENTIAL FISHING ZONES IN COASTAL WATERS: A CASE STUDY OF NIAS ISLAND WATERS Purwanto, Anang Dwi; Prayogo, Teguh; Marpaung, Sartono; Suhada, Argo Galih
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 17, No 1 (2020)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2020.v17.a3298

Abstract

The need for information on potential fishing zones based on remote sensing satellite data (ZPPI) in coastal waters is increasing. This study aims to create an information model of such zones in coastal waters (coastal ZPPI). The image data used include GHRSST, SNPP-VIIRS and MODIS-Aqua images acquired from September 1st-30th, 2018 and September 1st-30th, 2019, together with other supporting data. The coastal ZPPI information is based on the results of thermal front SST detection and overlaying this with chlorophyll-a. The method of determining the thermal front sea surface temperature (SST) used Single Image Edge Detection (SIED). The chlorophyll-a range used was in the mesotropic area (0.2-0.5 mg/m3). Coastal ZPPI coordinates were determined using the polygon centre of mass, while the coastal ZPPI information generated was only for coastal areas with a radius of between 4-12 nautical miles and was divided into two criteria, namely High Potential (HP) and Low Potential (LP). The results show that the coastal ZPPI models were suitable to determine fishing locations around Nias Island. The percentage of coastal ZPPI information generated was around 90% information monthly. In September 2018, 27 days of information were produced, consisting of 11 HP sets of coastal ZPPI information and 16 sets of LP information, while in September 2019 it was possible to produce 29 days of such information, comprising 11 sets of HP coastal ZPPI information and 18 LP sets. The use of SST parameters of GHRSST images and the addition of chlorophyll-a parameters to MODIS-Aqua images are very effective and efficient ways of supporting the provision of coastal ZPPI information in the waters of Nias Island and its surroundings.
ANALYSIS OF WATER PRODUCTIVITY IN THE BANDA SEA BASED ON REMOTE SENSING SATELLITE DATA Marpaung, Sartono; Faristyawan, Risky; Purwanto, Anang Dwi; Asriningrum, Wikanti; Suhada, Argo Galih; Prayogo, Teguh; Sitorus, Jansen
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 17, No 1 (2020)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2020.v17.a3280

Abstract

Abstract. This study examines the density of potential fishing zone (PFZ) points and chlorophyll-a concentration in the Banda Sea. The data used are those on chlorophyll-a from the Aqua MODIS satellite, PFZ points from ZAP and the monthly southern oscillation index. The methods used are single image edge detection, polygon center of mass, density function and a Hovmoller diagram. The result of the analysis show that productivity of chlorophyll-a in the Banda Sea is influenced by seasonal factors (dry season and wet season) and ENSO phenomena (El Niño and La Niña). High productivity of chlorophyll-a  occurs during in the dry season with the peak in August, while low productivity occurs in the wet season and the transition period, with the lowest levels in April and December. The variability in chlorophyll-a production is influenced by the global El Niño and La Niña phenomena; production increases during El Niño and decreases during La Niña. Tuna conservation areas have as lower productivity of chlorophyll-a and PFZ point density compared to the northern and southern parts of the Banda Sea. High density PFZ point regions are associated with regions that have higher productivity of chlorophyll-a, namely the southern part of the Banda Sea, while low density PFZ point areas  are associated with regions that have a low productivity of chlorophyll-a, namely tuna conservation areas. The effect of the El Niño phenomenon in increasing chlorophyll-a concentration is stronger in the southern part of study area than in the tuna conservation area. On the other hand, the effect of La Niña phenomenon in decreasing chlorophyll-a concentration is stronger in the tuna conservation area than in the southern and northern parts of the study area. 
METODE PENENTUAN TITIK KOORDINAT ZONA POTENSI PENANGKAPAN IKAN PELAGIS BERDASARKAN HASIL DETEKSI TERMAL FRONT SUHU PERMUKAAN LAUT Hamzah, Rossi; Prayogo, Teguh; Marpaung, Sartono
Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital Vol. 13 No. 2 (2016)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.pjpdcd.2016.v13.a2364

Abstract

Information points coordinate of potential fishing zones (PFZ) is required by user that to be more effective in conducting fishing operation. The results of thermal front detection using single image edge detection (SIED) as shape contour lines. This research aims to determine points coordinate for potential fishing zone based on detection of thermal fronts sea surface temperatures. To determine point coordinate performed segmentation on detection result according to size fishnet grid. Contour line contained in each grid is a polygon shape. Centroid of each polygon is point coordinate of PFZ. The result of sea surface temperature data processing from Terra/Aqua MODIS and Suomi NPP VIIRS satellite indicates that method of determination the centroid of polygon is very effective in determining the point coordinate of PFZ. Using that method the processing stages of satellite data to be faster, more efficient and practical due to the information of PFZ is already as points coordinate.
METODE DUAL KANAL UNTUK ESTIMASI KEDALAMAN DI PERAIRAN DANGKAL MENGGUNAKAN DATA SPOT 6 STUDI KASUS : TELUK LAMPUNG Arief, Muchlisin; Adawiah, Syifa Wismayati; Parwati, Ety; Marpaung, Sartono
Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital Vol. 14 No. 1 (2017)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.pjpdcd.2017.v14.a2618

Abstract

Depth data can be used to produce seabed profile, oceanography, biology, and sea level rise. Remote sensing technology can be used to estimate the depth of shallow marine waters characterized by the ability of light to penetrate water bodies. One image that can estimate the depth is SPOT 6 which has three visible canals and one NIR channel with 6 meter spatial resolution. This study used SPOT 6 image on March 22, 2015. The image was first being dark pixel atmospheric corrected by making 30 polygons. The originality of this method was to build a correlation between the dark pixel value of red and green channels with the depth of the field measurement results, made on June 3 to 9, 2015. The algorithm derived experimentally consisted of: thresholding which served to separate the land by the sea and the correlation function. The correlation function was obtained: first correlating the observation value with each band, then calculating the difference of minimum pixel darkness value and minimum for red and green channel was 0.056 and 0.0692. The model was then constructed by using the comparison proportions, so that the linear equations were obtained in two channels: Z (X1, X2) = 406.26 X1 + 327.21 X2 - 28.48. Depth estimation results were for a 5-meter scale, the most efficient estimation with the smallest error relative mean occurred in shallow water depth from 20 to 25 meters, while the result of 10 meters scale from 20 to 30 meters and the estimated depth had similar patterns or could be said close to reality. This method was able to detect sea depths up to 25 meters and had a small RMS error of 0.653246 meters. Thus the two-channel method could offer a fast, flexible, efficient, and economical solution to map topography of the ocean floor.
ANALISIS PERUBAHAN GARIS PANTAI UJUNG PANGKAH DENGAN MENGGUNAKAN METODE EDGE DETECTION DAN NORMALIZED DIFFERENCE WATER INDEX Anggraini, Nanin; Marpaung, Sartono; Hartuti, Maryani
Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital Vol. 14 No. 2 (2017)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.pjpdcd.1017.v14.a2545

Abstract

Besides to the effects from tidal, coastline position changed due to abrasion and accretion. Therefore, it is necessary to detect the position of coastline, one of them by utilizing Landsat data by using edge detection and NDWI filter. Edge detection is a mathematical method that aims to identify a point on a digital image based on the brightness level. Edge detection is used because it is very good to present the appearance of a very varied object on the image so it can be distinguished easily. NDWI is able to separate land and water clearly, making it easier for coastline analysis. This study aimed to detect coastline changes in Ujung Pangkah of Gresik Regency caused by accretion and abrasion using edge detection and NDWI filters on temporal Landsat data (2000 and 2015). The data used in this research was Landsat 7 in 2000 and Landsat 8 in 2015. The results showed that the coastline of Ujung Pangkah Gresik underwent many changes due to accretion and abrasion. The accretion area reached 11,35 km² and abrasion 5,19 km² within 15 year period.
ANALISIS SPASIAL KESESUAIAN BUDIDAYA KERAPU BERBASIS DATA PENGINDERAAN JAUH (STUDI KASUS: PULAU AMBON MALUKU) Anggraini, Nanin; Adawiah, Syifa Wismayati; Ginting, Devica Natalia Br; Marpaung, Sartono
Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital Vol. 16 No. 2 (2019)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/inderaja.v16i2.3358

Abstract

Indonesian waters have abundant marine aquaculture potential. This activity need to be maximized with remote sensing technology approach to determining locations that have the potential aquaculture areas. The research location is Ambon Island, Maluku Province. The method used for suitability site is Weighted Overlay Technique from biophysical parameters such as total suspended solids (TSS), sea surface temperature (SST), chlorophyll, and bathymetry. In addition, mangrove and coral reef data are used as a limiting factor for the suitability site. Based on the results of processing data, classes were quite suitable dominated in Piru Bay, Banguala Bay, and Ambon Bay; the appropriate classes were detected in Ambon Dalam Bay, and very suitable classes were detected in Piru Bay and Ambon Bay. The results of field measurement verification showed that the temperature of the image data with the insitu data correlated with the value of R2 0.74 and TSS image with insitu data shown R2 of 0.63.
ANALISIS KARAKTERISTIK NET PRIMARY PRODUCTIVITY DAN KLOROFIL-A DI LAUT BANDA DAN SEKITARNYA Prayogo, Teguh; Yati, Emi; Dwi Purwanto, Anang; Nandika, M. Rizki; Dirgahayu Domiri, Dede; Kushardono, Dony; Marpaung, Sartono
Jurnal Ilmu dan Teknologi Kelautan Tropis Vol. 14 No. 1 (2022): Jurnal Ilmu dan Teknologi Kelautan Tropis
Publisher : Department of Marine Science and Technology, Faculty of Fisheries and Marine Science, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jitkt.v14i1.36757

Abstract

Net primary productivity (NPP) and chlorophyll-a (Chl-a) are indicators of water productivity. In this study, an analysis of NPP and Chl-a characteristics in the Banda Sea was carried out using the Hovmöller diagram and Pearson’s correlation. The NPP data used comes from VGPM and Chl-a from Aqua MODIS satellite. The results of data analysis from January 2003-December 2020, NPP and Chl-a reached highest concentrations in dry season and lowest in wet season. For monthly data, the highest concentrations occurred in August and the lowest in April and December. The waters of the Banda Sea include mesotrophic waters with monthly average of NPP 429 mg C/m2/day and Chl-a 0.24 mg/m3. During La Niña and El Niño, there was a change (decrease/increase) the concentration of NPP and Chl-a in dry season and transition period II. NPP and Chl-a have a high correlation and a strong linear relationship. NPP and Chl-a have almost the same pattern/tendency temporally. The change of NPP concentration temporally corresponded to change of Chl-a concentration. Seasonal factors, La Niña and El Niño have a strong influence in influencing the variability of NPP and Chl-a concentrations. High productivity based on NPP and Chl-a didn’t affect for skipjack and tuna seasons (big pelagic), that occurs in wet season and transition period II. High productivity affects to flying fish season (small pelagic) that occurs in dry season.