cover
Contact Name
Mochamad Tito Julianto
Contact Email
mtjulianto@apps.ipb.ac.id
Phone
+622518625276
Journal Mail Official
milang@apps.ipb.ac.id
Editorial Address
Sekolah Sains Data, Matematika dan Informatika, IPB University Jl. Meranti, Gedung FMIPA Lt.2 Kampus IPB Dramaga Bogor 16680
Location
Kota bogor,
Jawa barat
INDONESIA
MILANG Journal of Mathematics and Its Applications
ISSN : -     EISSN : 29635233     DOI : https://doi.org/10.29244/milang.18.1
Core Subject : Education,
MILANG Journal of Mathematics and Its Applications publishes original research articles in the broad field of mathematics and its interdisciplinary applications. The journal covers, but is not limited to, the following areas: Mathematics in Informatics, Mathematics in Life Sciences, Mathematics in Actuarial Science, Mathematics in Natural Sciences, and Mathematics in Graph Theory. MILANG is open to high-quality submissions presenting innovative mathematical theories, methods, and applications that advance scientific understanding or solve real-world problems. The journal welcomes interdisciplinary research and contributions that bridge mathematics with other scientific domains.
Articles 5 Documents
Search results for , issue "Vol. 9 No. 2 (2010): Journal of Mathematics and Its Applications" : 5 Documents clear
COMPARING OPTIMISM OF ERROR RATE ESTIMATORS IN DISCRIMINANT ANALYSIS BY MONTE CARLO SIMULATION ON MULTIVARIATE NORMAL DATA MANGKU, I W.
MILANG Journal of Mathematics and Its Applications Vol. 9 No. 2 (2010): Journal of Mathematics and Its Applications
Publisher : School of Data Science, Mathematics and Informatics, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jmap.9.2.1-12

Abstract

The problem considered in this paper is estimation of the error rate in two-group discriminant analysis. Here, performance of 19 existing error rate estimators are compared and contrasted by mean of Monte Carlo simulations under the ideal condition that both parent populations are multivariate normal with common covariance matrix. The criterion used for comparing those error rate estimators is optimism. Five experimental factors are considered for the simulation, they are the number of variables, the sample size relative to the number of variables, the Mahalanobis squared distance between the two populations, dependency factor among variables, and the degree of variation among the elements of the mean vector of the populations. The result of the simulation shows that there is no estimator performing the best for all situations. However, in general, the estimator U¹ proposed by Lachenbruch and Mickey (1968) is the best
BIFURKASI HOPF PADA MODEL SILKUS BISNIS KALDOR-KALECKI TANPA WAKTU TUNDA NURRACHMAWATI, N.; KUSNANTO, A.
MILANG Journal of Mathematics and Its Applications Vol. 9 No. 2 (2010): Journal of Mathematics and Its Applications
Publisher : School of Data Science, Mathematics and Informatics, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jmap.9.2.13-18

Abstract

Dalam penelitian ini dipelajari dinamika pendapatan suatu perusahaan dengan stok modal yang diberikan dalam model Kaldor-Kaleckitanpa Waktu Tunda. Selanjutnya dengan menggunakan Teorema Bifurkasi Hopfakan ditentukan eksistensi solusi periodik dan keberadaansiklus limit (limit cycle) dari model inidan melakukan simulasi untuk beberapa nilai parameter yang terlibat.
PENDUGAAN KOMPONEN PERIODIK FUNGSI INTENSITAS BERBENTUK FUNGSI PERIODIK KALI TREN KUADRATIK SUATU PROSES POISSON NONHOMOGEN RAMDANI, P.; MANGKU, I W.; BUDIARTI, R.
MILANG Journal of Mathematics and Its Applications Vol. 9 No. 2 (2010): Journal of Mathematics and Its Applications
Publisher : School of Data Science, Mathematics and Informatics, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jmap.9.2.19-30

Abstract

Pada tulisan ini dibahas pendugaan komponen periodik fungsi intensitas berbentuk fungsi periodik kali tren kuadratik suatu proses Poisson non-homogen. Diperhatikan keadaan terburuk, hanya terdapat realisasi tunggal dari proses Poisson dengan fungsi intensitas yang terdiri atas komponen periodik dikalikan dengan komponen tren kuadratik yang diamati pada interval [0,n]. Diasumsikan bahwa periode dari komponen periodik diketahui. Penduga komponen periodik dari fungsi intensitas tersebut telah disusun dan Mean Square Error (MSE) penduga telah dibuktikan konvergen menuju nol untuk n  . Selain itu, juga telah diformulasikan aproksimasi asimtotik bagi bias, ragam, dan Mean Square Error (MSE) dari penduga yang dikaji. Ditentukan juga bandwidth optimal asimtotik bagi penduga tersebut
MASALAH DIRICHLET UNTUK PERSAMAAN BEDA DALAM GRAF TERBOBOTI GARNADI, A. D.; KHATIZAH, E.
MILANG Journal of Mathematics and Its Applications Vol. 9 No. 2 (2010): Journal of Mathematics and Its Applications
Publisher : School of Data Science, Mathematics and Informatics, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jmap.9.2.31-40

Abstract

Permasalahan umum persamaan diferensial parsial dapat ditirukan ke dalam graf, khususnya dalam graf terhubung tak berarah. Definisikan fungsi bernilai real f x( ) untuk verteks, x, di G dan ruang Hilbert 2 L G( ) yang dibentuk oleh semua fungsi f G R :  . Berdasarkan sifat seminorma pada 2 L G( ) definisikan subruang 1 H G( ) yang tersusun dari semua fungsi bernilai nol. Relasi ekuivalensi yang terdapat dalam 2 L G( ) mengakibatkan subruang 1 H G( ) dapat diidentifikasi melalui ruang kuosen 2 2 L G L G %( ) ( ) / ~  . Penyesuaian untuk fungsi dua variabel dilakukan dengan menambahkan definisi turunan berarah dalam variabel pertama. Definisi dan notasi pada graf G dapat diterapkan pada S S S   dengan S adalah subgraf terimbas G yang memiliki batas S . Dalam masalah Dirichlet, pembahasan difokuskan pada graf terimbas S dari G dengan bobot  ( , ) x y yang dipadankan pada setiap sisi di G. Asumsikan batas S kosong dan definisikan f S R :  . Solusi dari masalah Dirichlet ekuivalen dengan solusi masalah variasional. Masalah Dirichlet non homogen dengan fungsi yang diberikan g S R :   , dapat direduksi ke dalam masalah Dirichlet homogen. Solusi dari masalah ini diberikan menggunakan fungsi Green. Pendekatan ini cukup bagus bila dibandingkan dengan masalah identifikasi Berenstein dan Chunng [2].
FURTHER EXPLORATION OF THE KLEE-MINTY PROBLEM SILALAHI, B. P.
MILANG Journal of Mathematics and Its Applications Vol. 9 No. 2 (2010): Journal of Mathematics and Its Applications
Publisher : School of Data Science, Mathematics and Informatics, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jmap.9.2.41-53

Abstract

The Klee-Minty problem is explored in this paper. The coordinates formulas of all vertices of the Klee-Minty cube are presented. The subset representation of the vertices of the Klee-Minty cube is discussed. How to construct the Klee-Minty path is showed. It turns out that there are rich structures in the Klee-Minty path. We explore these structures. Key words: Klee-Minty cube, Klee-Minty path, Klee-Minty problem.

Page 1 of 1 | Total Record : 5


Filter by Year

2010 2010


Filter By Issues
All Issue Vol. 21 No. 1 (2025): MILANG Journal of Mathematics and Its Applications Vol. 20 No. 2 (2024): MILANG Journal of Mathematics and Its Applications Vol. 20 No. 1 (2024): MILANG Journal of Mathematics and Its Applications Vol. 19 No. 2 (2023): MILANG Journal of Mathematics and Its Applications Vol. 19 No. 1 (2023): MILANG Journal of Mathematics and Its Applications Vol. 18 No. 2 (2022): MILANG Journal of Mathematics and Its Applications Vol. 18 No. 1 (2022): MILANG Journal of Mathematics and Its Applications Vol. 17 No. 2 (2018): Journal of Mathematics and Its Applications Vol. 17 No. 1 (2018): Journal of Mathematics and Its Applications Vol. 16 No. 2 (2017): Journal of Mathematics and Its Applications Vol. 16 No. 1 (2017): Journal of Mathematics and Its Applications Vol. 15 No. 2 (2016): Journal of Mathematics and Its Applications Vol. 15 No. 1 (2016): Journal of Mathematics and Its Applications Vol. 14 No. 2 (2015): Journal of Mathematics and Its Applications Vol. 14 No. 1 (2015): Journal of Mathematics and Its Applications Vol. 13 No. 2 (2014): Journal of Mathematics and Its Applications Vol. 13 No. 1 (2014): Journal of Mathematics and Its Applications Vol. 12 No. 2 (2013): Journal of Mathematics and Its Applications Vol. 12 No. 1 (2013): Journal of Mathematics and Its Applications Vol. 11 No. 2 (2012): Journal of Mathematics and Its Applications Vol. 11 No. 1 (2012): Journal of Mathematics and Its Applications Vol. 10 No. 2 (2011): Journal of Mathematics and Its Applications Vol. 10 No. 1 (2011): Journal of Mathematics and Its Applications Vol. 9 No. 2 (2010): Journal of Mathematics and Its Applications Vol. 9 No. 1 (2010): Journal of Mathematics and Its Applications Vol. 8 No. 2 (2009): Journal of Mathematics and Its Applications Vol. 8 No. 1 (2009): Journal of Mathematics and Its Applications Vol. 7 No. 2 (2008): Journal of Mathematics and Its Applications Vol. 7 No. 1 (2008): Journal of Mathematics and Its Applications Vol. 6 No. 2 (2007): Journal of Mathematics and Its Applications Vol. 6 No. 1 (2007): Journal of Mathematics and Its Applications Vol. 5 No. 2 (2006): Journal of Mathematics and Its Applications Vol. 5 No. 1 (2006): Journal of Mathematics and Its Applications Vol. 4 No. 2 (2005): Journal of Mathematics and Its Applications Vol. 4 No. 1 (2005): Journal of Mathematics and Its Applications Vol. 3 No. 2 (2004): Journal of Mathematics and Its Applications Vol. 3 No. 1 (2004): Journal of Mathematics and Its Applications Vol. 2 No. 2 (2003): Journal of Mathematics and Its Applications Vol. 2 No. 1 (2003): Journal of Mathematics and Its Applications Vol. 1 No. 2 (2002): Journal of Mathematics and Its Applications Vol. 1 No. 1 (2002): Journal of Mathematics and Its Applications More Issue