cover
Contact Name
Andri Agus Rahman
Contact Email
jurnal@rmpi.brin.go.id
Phone
+6282120080815
Journal Mail Official
eksplorium@brin.go.id
Editorial Address
Gd. 720, KST BJ Habibie, Kawasan Puspiptek Serpong, Tangerang Selatan 15314
Location
Kota bandung,
Jawa barat
INDONESIA
Eksplorium : Buletin Pusat Pengembangan Bahan Galian Nuklir
ISSN : 08541418     EISSN : 2503426X     DOI : https://doi.org/10.55981/eksplorium
EKSPLORIUM is published to deliver the results of studies, research and development in the field of nuclear geology. The manuscripts are the result of study, research and development of nuclear geology with scope: geology, exploration, mining, nuclear minerals processing, safety and environment, and development of nuclear technology for the welfare.
Articles 7 Documents
Search results for , issue "Vol. 40 No. 1 (2019): MEI 2019" : 7 Documents clear
Estimasi Sumber Daya Uranium Tipe Batupasir di Sektor Aloban, Sibolga, Tapanuli Tengah Ciputra, Roni Cahya; Muhammad, Adi Gunawan; Adimedha, Tyto Baskara; Syaeful, Heri
EKSPLORIUM Vol. 40 No. 1 (2019): MEI 2019
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2019.40.1.5360

Abstract

Uranium explorations in Sibolga Area have been conducted since 1978 by BATAN and successfully result in sandstone-type uranium mineralization. Research related to uranium mineralization concept on sandstone and conglomerate at Aloban Sector, Sibolga has been conducted through 22 boreholes data which resulted in the geological section, anomaly distribution along with radiometry counting and geochemistry data. This research objective is to obtain uranium resources in Aloban Sector by correlating radiometry counting and geochemical data from previous research by using a geostatistic approach. Geostatistical processing using SGeMS software shows a correlation coefficient of 0.5 so that the radiometry and geochemical data are interpreted to have a good correlation. Uranium Resources estimation was measured on Conglomerate I and Sandstone I units which are considered to have thick and wide mineralization distribution. The average uranium grade for Conglomerate I and Sandstone I units are 173.05 ppm U and 161.54 ppm U respectively. Uranium resource estimation at Aloban Sector is 415 tons as inferred resources.
Penentuan Kondisi Optimum Proses Ekstraksi Uranium dan Torium dari Terak II Timah dengan Metode Pelindian Asam Sulfat dan Solvent Extraction Trioctylamine (TOA) Anggraini, Mutia; Nawawi, Fuad Wafa; Widana, Kurnia Setiawan
EKSPLORIUM Vol. 40 No. 1 (2019): MEI 2019
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2019.40.1.5378

Abstract

Tin slag II is a by-product of the second stage of tin smelting. The tin slag II contains high economic value elements in the form of radioactive elements (uranium and thorium) and rare earth elements. These elements can be utilized if they are separated from each other. The process of separating radioactive elements and rare earth elements has been carried out by leaching sulfuric acid method. The results of this process are residue containing rare earth elements and filtrates containing radioactive elements in the form of uranium and thorium sulfate. Research related to the separation of uranium and thorium sulfate in tin slag processing is only slightly published. This paper aims to determine the effectiveness of the uranium and thorium separating process by the solvent extraction method using trioctylamine (TOA). The solvent extraction process is carried out by varying the concentration of TOA used, comparison of the aqueous and organic phase (A/O) and variations in extraction time. In this study, the optimum conditions for the process were obtained at 4% of TOA concentration, 1 : 1 of A/O ratio, and mixing time of aqueous and organic phase for 2 minutes. In this condition, uranium and thorium which extracted were 67% and 0.84% respectively.
Proses Pembentukan dan Asal Material Formasi Kayasa di Halmahera Berdasarkan Unsur Jejak dan Unsur Tanah Jarang Irzon, Ronaldo
EKSPLORIUM Vol. 40 No. 1 (2019): MEI 2019
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2019.40.1.5445

Abstract

The complexity of rock formation on Halmahera Island is influenced by convergences of at least three main plates and is located in the active collision of two arcs. The Kayasa Formation is one of four volcanic rock units on Halmahera Island. Petrographic analysis, rare elements, and rare earth elements (REE) are applied in studying the rock emplacement process and the material source of Kayasa Formation. Bipolar microscopy is utilized in petrographic studies while Inductively Coupled Plasma-Mass Spectrometry is used for measuring the trace and rare earth elements compositions in seven fresh samples and four altered/weathered rocks in Kayasa Formation’s domain. The fresh samples are classified as andesite-basalt based on quartz, K-feldspar, and plagioclase modal composition. Plagioclase fractional crystallization is thought to play an important role in the crystallization of Kayasa Formations. Fresh rocks in this study tend to crystallize under oxidative conditions in the marine environment, whilst altered or weathered ones formed in a reductive environment above sea level. Based on megascopic observations and REE patterns, the material of Kayasa Formation is very likely derived from the ocean plate.
Pendugaan Awal Patahan di Pulau Jawa Menggunakan Anomali Gravitasi dan Riwayat Kegempaan Ryanto, Theo Alvin; Suntoko, Hadi; Setiaji, Abimanyu Bondan Wicaksono
EKSPLORIUM Vol. 40 No. 1 (2019): MEI 2019
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2019.40.1.5470

Abstract

Information related to the fault existences is needed for industrial development planning, mainly on the Nuclear Power Plant (NPP) site planning. This study is aimed to build preliminary prediction on faults existence in Java Island by using free-air gravity and earthquakes history data. The methodologies are separating regional with residual gravity anomalies and then analyzing them by correlating the continuity of their contrast values which have similarities with the distribution of earthquakes epicenters point. Based on the analysis, some lineaments in Java Island are predicted as faults which relatively directing to north-south and west-east.
Pendugaan Potensi Volume Akuifer Menggunakan Metode Geolistrik di Pulau Gili Ketapang, Probolinggo, Jawa Timur Pryambodo, Dino Gunawan; Prihantono, Joko
EKSPLORIUM Vol. 40 No. 1 (2019): MEI 2019
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2019.40.1.5415

Abstract

Geoelectric measurement using Schlumberger configuration was carried out in Gili Ketapang Island, a small island with a population density of 12,356 people/km2. The measurement conducted at 8 locations using a vertical electrical sounding (VES) method. The result of geoelectric data processing shows aquifer resistivity value ranging from 2.71–206 Ωm at the sandy limestone lithology. The largest aquifer volume potency based on the 2D groundwater aquifer model is in the K-03 and K-17 location. The 3D groundwater aquifer model shows that the aquifer volume is 27,689,400 m3 or about 27.689.400.000 liters. The groundwater inside the aquifer will last within 68 years in a condition where there is no population increase. Besides, the groundwater also lasts even there is no water addition inside the aquifer, by natural or artificial
Pemisahan Cerium dari Logam Tanah Jarang Hidroksida Melalui Kalsinasi dan Pelindian Menggunakan HNO3 Encer Trinopiawan, Kurnia; Purwani, Maria Veronica; Anggraini, Mutia; Prassanti, Riesna
EKSPLORIUM Vol. 40 No. 1 (2019): MEI 2019
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2019.40.1.5411

Abstract

Application of Rare Earth Elements (REE) uses broadly in various fields related to modernization. It causes many companies are developing processing techniques to extract REE from rare earth mineral deposits. REE hydroxide processing into cerium oxide, lanthanum oxide, and neodymium concentrates has conducted by PSTA-BATAN in collaboration with PTBGN-BATAN. The previous economic study issued in excessive ammonia caused by the use of concentrated nitric acid in the cerium dissolution process. Therefore, process innovation is necessary to do by calcination and leaching methods using dilute HNO3. This research aims to determine the effectiveness of the calcination and leaching process with dilute HNO3. Calcination conducted at 1000°C temperatures with the observing parameters is calcination time, HNO3 concentration, and leaching rate. The result of the study is that calcination can convert REE hydroxide into REE oxide. The longer calcination time, the easier the REE oxide formed. The three hours calcination process enhances the concentration of La, Ce, and Nd from 7.80%, 28.00%, and 15.11% to 12.69%, 45.50%, and 24.45% respectively. The kinetic reaction of the RE(OH)3 calcination reaction follows a chemical reaction process with the equation y = 0.3145x + 0.0789 and R2 = 0.9497. Then, REE oxide from calcination reacted with dilute HNO3. The higher the concentration of HNO3 at various leaching levels, the better the leaching efficiency of La and Nd while Ce is impossible to leach or the leaching efficiency is close to zero. The optimum leaching process on three levels of leaching conditions is using 1 M HNO3. The leach reaction kinetics follows the core shrinkage model of the surface chemical reaction with the equation y = 0.1732x - 0.2088 and R2 = 0.9828.
Identifikasi Keterdapatan Mineral Radioaktif pada Urat-Urat Magnetit di Daerah Ella Ilir, Melawi, Kalimantan Barat Ngadenin; Indrastomo, Frederikus Dian; Widodo; Widana, Kurnia Setiawan
EKSPLORIUM Vol. 40 No. 1 (2019): MEI 2019
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2019.40.1.5350

Abstract

Ella Ilir administratively located in Melawi Regency, West Kalimantan. Regional geology of Ella Ilir area is composed of metamorphic rocks in Triassic–Carboniferous age which are intruded by Jurassic and Cretaceous granitic rocks. Radioactive minerals occurences in the area are indicated by magnetite veins radioactivities on Triassic to Carboniferous metamorphic rocks whose values range from 1,000 c/s to 15,000 c/s. Goal of the study is to determine the type of ore mineral deposits and to identify the presence of radioactive mineral in magnetite veins in Ella Ilir area. The methods used are geological mapping, radioactivity measurements, analysis on uranium grades, and mineragraphy analysis of severe magnetite veins samples. Lithologies of the study area are composed by biotite quartzite, metatuff, metasilt, metapellite, biotite granite, and ryolite. The east-west sinistral fault and the north-south dextral fault are the developed fault structures in this area. Mineral composition of magnetite veins are consists of iron ore, sulfide, and radioactive minerals. Iron ore mineral consists of magnetite, hematit, and goetite. Sulfide minerals consist of pyrite, pirhotite, and molybdenite, while radioactive minerals consist of uraninite and gummite. The occurences of magnetite veins are controlled by lithology and geological structures. The magnetite veins in metasilt are thick (1.5–5 m), filled the fractures in the fault zone. Meanwhile, the magnetite veins in metapellite are thinner (milimetric–centimetric), filled the fractures that are parallel to the schistocity. The ore deposits in the study area are iron ore deposits or magnetite ore deposits formed by magmatic hydrothermal processes.

Page 1 of 1 | Total Record : 7