cover
Contact Name
Andri Agus Rahman
Contact Email
jurnal@rmpi.brin.go.id
Phone
+6282120080815
Journal Mail Official
eksplorium@brin.go.id
Editorial Address
Gd. 720, KST BJ Habibie, Kawasan Puspiptek Serpong, Tangerang Selatan 15314
Location
Kota bandung,
Jawa barat
INDONESIA
Eksplorium : Buletin Pusat Pengembangan Bahan Galian Nuklir
ISSN : 08541418     EISSN : 2503426X     DOI : https://doi.org/10.55981/eksplorium
EKSPLORIUM is published to deliver the results of studies, research and development in the field of nuclear geology. The manuscripts are the result of study, research and development of nuclear geology with scope: geology, exploration, mining, nuclear minerals processing, safety and environment, and development of nuclear technology for the welfare.
Articles 172 Documents
Kajian Awal Prospek Bahan Galian Monasit Mengandung U dan Elemen Asosiasinya di Semelangan Ketapang, Kalimantan Barat Subiantoro, Lilik; Soetopo, Bambang; Haryanto, Dwi
EKSPLORIUM Vol. 32 No. 1 (2011): MEI 2011
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2011.32.1.2826

Abstract

Semelangan study area included in the regional geology Ketapang. Geochemical analysis of sediment samples that represented showed that the region Semelangan Ketapang, District Nanga Tayap, Ketapang identified monazite deposite containing radioactive mineral. The monazite minerals containing rare earth element are potential. The presence of radioactive elements have been identified by the analysis granulometry of some pan consentrate samples. They containt of monazite grain mineral to reach 63% and some sample content of zircon grain mineral up to 40% (from total grains), grain analysis of rock samples are samples containing monazite 0.11 %. Activities study in this area is done by studying ecxisting data and laboratory data evaluation, which covering studies geological aspects, source rock, trap and plaser monazite deposits containing U, Th and REE and zircon. The objective is to obtain information about the character of geological and mineral resource distribution of monazite containing Th and U and rare earth elements in monazite and zircon. Source rock of the monazite minerals is a granite with aged 77-15 million (Yura - Late Cretaceous), including the S type granite group that formed in the alkali granite pegmatitic stage, which highly differentiated advanced at a temperature 550-6000°C. The radioactivity anomalous values is 400 c/s – 9200 c/s (biotite granite) with a mineral character of the form K-feldspar, quartz and plagioclase (K-feldspar to plagioclase ratio varies from 80-100 versus 10), containing minerals association such as thorit, monazite, zircon and alanit. The U content in granite rock ranging from 2.5 ppm - 64.8 ppm U. Lateral distribution plaser alluvial sediments contain monazite occupy flood plains of the valley between the hills, is located separately from the coastal plain and following the granite distribution pattern (source monazite). Monazite prospect region lies at the flood plains of the valley catcment area S. Pawan, S. Tulah and S Laur with a total area of 2.1135 million hectares.
Identifikasi Pola Struktur Geologi Sebagai Pengontrol Sebaran Mineral Radioaktif Berdasarkan Kelurusan Pada Citra Landsat-8 di Mamuju, Sulawesi Barat Indrastomo, Frederikus Dian; Sukadana, I Gde; Suharji
EKSPLORIUM Vol. 38 No. 2 (2017): NOVEMBER 2017
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2017.38.2.3874

Abstract

Mamuju area and its surrounding are composed of volcanic rock containing uranium (U) and thorium (Th) elements. Radioelements concentrations in the area reach 1,529 ppm eU and 817 ppm eTh. Radioactive minerals identified in the area are thorianite, davidite, gummite, and autunite. The geological structures were formed by tectonic activities which controlled the creation of volcanic complex and U-Th mineralization in the complex. Identification of geological structure in the field is very difficult due to densely vegetation and higly degree of weathering. The interpreted lineaments from Landsat-8 imagery are the manifestation of geological structures which have controlled the existence of U and Th. Lineaments analysis using Sastratenaya formula is used to obtain the relative age and chronologies of the lineaments. Dose rate measurements in the area show the trend of radioactivitiy anomalies are trending northwest–southeast. The Sastratenaya formula results the formed structures are relatively older and dominantly directing northwest–southeast (N 140o–150o E). Based on the linement interpretation, the dominant direction has similliarity with volcanic and radioactivity distribution. Structures which controlling the volcanic formation and related to U and Th mineralization generally are the northwest–southeast trending structures, which were created along with U and Th mineralization.
UPSTREAM HYDRAULIC INTERCONNECTION STUDY OF GUNUNGKIDUL KARST AREA UNDERGROUND RIVERS Sidauruk, Paston; Satrio; Pujiindiyati, Evarista Ristin; Aliyanta, Barokah
EKSPLORIUM Vol. 38 No. 2 (2017): NOVEMBER 2017
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2017.38.2.3715

Abstract

Hydraulic interconnection of Jomblangan (Petung) cave with other caves and water discharges in Gunungkidul karst area has been investigated using tracer techniques and verified by stable isotopes and hydrochemical data interpretation. Many studies have been conducted to study the interconnections of underground rivers around Gunungkidul Karst area, most of them, however, focused on the interconnection of underground rivers around Bribin and Seropan caves. This is because of the development of micro hydro turbines to lift the water from underground river were still focused around Bribin and Seropan caves. Petung, located to the north of Bribin and Seropan caves, was believed to be one of the cave at the upstream of Bribin and Seropan caves, however, there is no evidence yet of the hydraulic interconnection between Petung cave with either Bribin or Seropan caves. The results of tracer technique at the current study, showed that there was no hydraulic interconnection between Petung cave with either Bribin and Seropan caves. On the other hand, the study showed an indication of a direct flow from Petung cave to Sriti and Beton springs. The travel times from Petung to Sriti and Beton springs were found to be around 2 and 10 hours, respectively. This finding is also in agreement with the results of chemical and stable isotopes analysis.
Penentuan Anomali Gayaberat Regional dan Residual Menggunakan Filter Gaussian Daerah Mamuju Sulawesi Barat Karunianto, Adhika Junara; Haryanto, Dwi; Hikmatullah, Fajar; Laesanpura, Agus
EKSPLORIUM Vol. 38 No. 2 (2017): NOVEMBER 2017
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2017.38.2.3921

Abstract

Gravity method is a geophysical method that has been frequently used in prospecting mineral resources. The parameter of searched object is based on variations of gravity acceleration measurements on the surface due to variations in sub-surface geological changes. Research area is located in Mamuju Area of West Sulawesi Province where tectonically a complex geological region, which is at a meeting of three large plates, the Pacific plate, the Indo-Australian plate and the Eurasian plate and the smaller Philippine plate. In addition, Mamuju is an area with a high radioactivity dose rate that has potency to radioactive minerals resources. The purpose of the research is to obtain gravity anomalies by using qualitative separation and interpretation of regional and residual gravity anomalies. Complete Bouguer Anomaly (CBA) value of the research area obtained from the measurements was 46.0 – 115.7 mGal. Based on the CBA map, the separation process of regional gravity anomalies and residual using Gaussian filtering technique conducted. This filtering technique works based on spectral analysis of gravity amplitude changes in spatial where the result is a cutoff wave number of 1.1736 x 10-3/meter and a wavelength of 5373.45 m. The regional and residual gravity anomalies range from 51.8 to 102 mGal and -10.4 to 14.8 mGal respectively. The depth of influence of each anomaly is calculated based on their spectral wavelengths, resulting 970.97 m and 100.21 m for regional and residual anomalies respectively. There are five zones based on the residual anomaly map, which are zones A, B, C, D and E. The heaviest positive gravity anomaly is found in zone A and B, which is predicted to be influenced by Adang lava with relative north – south distribution.
Identifikasi Patahan Menggunakan Analisis Data Deformasi Tanah di Tapak RDE Serpong Suntoko, Hadi; Sriyana
EKSPLORIUM Vol. 38 No. 2 (2017): NOVEMBER 2017
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2017.38.2.3352

Abstract

Experimental Power Reactor (EPR) site is located in Serpong and it has a distance of ± 67 km from the Cimandiri active fault. Result of EPR site evaluation show that it is feasible and safe from the active fault. However, it is necessary to monitor the rock deformation by using Global Positioning System(GPS) tool. The goal is to obtain precise coordinates through GPS data to identify the presence of active fault activity and its impact on the site. The monitoring is using six measuring points configuration mounted crossing the southeast-northwest suppose fault line direction. The research method is using coordinate data collection from BATAN GPS periodic station and BIG GPS continuous station in radius 25 km. Data processing is using Bernese Version 5.2 Software, proceed radially from station 1 as reference point and then continued by data interpretation. The Analysis result shows that the fault/tectonic condition near EPR site is in the range of 0.05 microstrain which is an area with stable tectonic condition.
Studi Ekstraksi Bijih Thorit dengan Metode Digesti Asam dan Pemisahan Thorium dari Logam Tanah Jarang dengan Metode Oksidasi-Presipitasi Selektif Said, Moch Iqbal Nur; Anggraini, Mutia; Mubarok, Mohammad Zaki; Widana, Kurnia Setiawan
EKSPLORIUM Vol. 38 No. 2 (2017): NOVEMBER 2017
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2017.38.2.3930

Abstract

Thorium (Th) is a radioactive metal that can be formed along with uranumand rare earth metals (REM). Minerals contain radioactive elements are monazite ((Ce,La,Y,U/Th)PO4), thorianite ((Th,U)O2), and thorite (ThSiO4). Mamuju Area is containing radioactive minerals, thorite is one of them. To separate REM from radioactive elements can be conducted by exctracting thorium from thorite ore by acid digestion method using sulphuric acid (H2SO4), followed by leaching and thorium recovery in the form of thorium hydroxide by chemical precipitation using ammonium hydroxide (NH4OH). The experimental results showed that the optimum conditions of acid digestion that give the highest Th extraction percentage on solid to liquid ratio are obtained at 1:2 (g/mL) in 60 minutes with extraction percentages of Th, iron (Fe) and REM are 82.47%, 80.08%, and 83.31% respectively. The highest thorium precipitation percentage, as much as 95.47% , was obtained at pH 4.5 on room temperature (26 ± 1°C). At higher temperature (70°C), a lower percentage of thorium precipitation is obtained, as much as 83.69%. Pre-oxidation by using H2O2 solution with two times stoichiometry for 1.5 hours at room temperature is increasing Fe precipitation percentage from 93.08% to 99.93%.
Metode Nuclear Magnetic Resonance Sounding (NMRS) Merupakan Teknik Baru dalam Eksplorasi Airtanah Nurdin, Muhammad; Sudarto, Slamet
EKSPLORIUM Vol. 32 No. 1 (2011): MEI 2011
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2011.32.1.2827

Abstract

NMRS method has been used in the past 10 years with success in various geological context and groundwater exploration. This method has indeed the ability of directly detecting the presence of water through the excitation of the hydrogen protons of water molecules. The frequency to which the H protons react depends on the magnitude of the Earth magnetic field, while the intensity of the excitation determines the depth of investigation. The amplitude of the magnetic field generated in return by the water of a layer is proportional to the porosity of this layer, and the time constant of the relaxation curve is linked to the mean pore size of the material, that is to say tightly related to its hydraulic permeability. A field cases such as illustrate NMRS application that is taken from measurement at Mauritania. NMRS measurement results in dry areas indicate the time-relaxation amplitude is low (10 A-ms) and water content is 1%. While the results of the aquifer region NMRS measurements showed -relaxation-time amplitude is quite large (270 A-ms) and water content is 12-30%.
Studi Prospek Monasit di Daerah Tumbang Rusa, Tanjung Pandan, Belitung, Propinsi Bangka Belitung Soetopo, Bambang; Subiantoro, Lilik; Ngadenin, Ngadenin; Madyaningarum, Nunik
EKSPLORIUM Vol. 32 No. 1 (2011): MEI 2011
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2011.32.1.2828

Abstract

Monazite mineral chemically contained U, Th and rare earth elements (REE) that geologically associated with the presence of zircon as plaser beach and river sediments. Distribution of granite that containing monazite lays on a single point lead Malaysia, Bangka Belitung, Karimata. The content of monazite sands in concentrate reached 2.719% is in the granite contain monazite 1-2%. The purpose of this research are expected to get the geological character of information acquisition, distribution and potentially resource of Monazite in the10 km2 area​​. The method taken are the radioactivity measurement of rocks and sediment, heavy mineral sampling and laboratory analysis, including grain size analysis and the levels of U, Th and RE.The Results of research showed that, in geological rock formation composed of Carbon-old klampit - Perm who have metamorfosed and unbreakable then intrusived by granite Triassic - Jurassic containing monazite, zircon. Due process of weathering, sedimentation of mineral monazite, zircon separated and deposited as alluvial scattered trending NW - SE, which is reflected from the measurement data alluvial radioactivity ranged from 75-400 c / s. U concentration ranges from 9.5 to 76.5 ppm U and Th content of 55-610 ppm Th with the prospect area 399.3 Ha.
Pemisahan Uranium dari Thorium pada Monasit dengan Metode Ekstraksi Pelarut Alamine Trinopiawan, Kurnia; Prassanti, Riesna; Sumarni, Sumarni; Pudjianto, Rudi
EKSPLORIUM Vol. 32 No. 1 (2011): MEI 2011
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2011.32.1.2829

Abstract

The research of monazite processing have obtained the process to recover 62% of rare earth elements (REE) from following steps, such as decomposition, partial dissolution, precipitation at pH 6,3, and precipitation at pH 9,8. There was an increased efficiency of the process in 2009, when ion exchange is used in process development, and the REE recovery became 85%. Besides REE, monazite processing also produce uranium and thorium, but they not separated individually yet. The research of the U from Th separation from pH 6,3 precipitate dissolution by H2SO4, is carried out using solvent extraction method, which the extractant consist of Alamine-336, kerosene, and isodecanol. This research is purposed to obtain the optimum condition of separation uranium from thorium with solvent extraction, where U separated from Th as best as it could . The research’s parameters are feed pH, O/A ratio, and extraction time. And the result showed that the optimum condition were 1,5 of pH, 5 of O/A ratio, and 5 minutes of extraction time, and the percentage of U extracted was 100%, but 32,44% of Th also extracted. From the result, it has a conclusion that 67,56% of Th could be separated from U.
Pemantauan Kualitas Air Sekitar Kolam Limbah PPGN Secara Kimia dan Radioaktivitas Wismawati, Titi; Widarti, Sri; Deddi, Eep; Nugroho, Andung
EKSPLORIUM Vol. 32 No. 1 (2011): MEI 2011
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/eksplorium.2011.32.1.2830

Abstract

This research purpose is to monitor the water quality of soil around the waste pond through measurement of chemical constituents (Ca, Mg, Fe, Ni, Zn, Cu, Pb, Mn and U) and water radioactivity. The water quality around tailing pond can be identified by analized the water sample from 4 control wells as deep as 20 m located on the fourth side of the pool and 2 comparison wells with a distance of 50 m and 100 m from the tailing pond. The measurement of chemical constituents of controll well water and comparison well water was done by using Atomic Absorption Spectrophotometer (AAS). The measurement of Uranium content was done by using UV – VIS Spectrophotometer, whereas measurement of radioactivity was measured by Eberline SPA-1 α detector associated with a counter scalers Ludlum model 1000. Determination of the quality of well water was used Storet method. Measurement result obtained in 2010 : the chemical content water in the control wells; Ca (2.31 – 2.91) mg/l, Mg (0.22 – 0.34) mg/l, Fe (0.024 – 0.033) mg/l, Ni (0.0028 – 0.030) mg/l, Zn (0.0019 – 0.025) mg/l, Cu (0.038 – 0.060) mg/l, Pb (0.003 – 0.041) mg/l, Mn (0.004 – 0.005) mg/l, U (0.051 – 0.298) mg/l, Ni (0.003 – 0.004) mg/l, Zn (0.03 – 0.04) mg/l, Cu (0.004 – 0.004) mg/l, Pb (0.003 - 0.003), Mn (0.005 – 0.021) mg/l, and radioactivity of Uranium was (0.025. 10-3 – 0.028.10-3) Bq/l. The radioactivity of control wells in the first quarter (2.321 – 2.635) . 10-2 Bq/l, second quarter (2.162 – 2.823) . 10-2 Bq/l, third quarter (2.424 – 2.931).10-2 Bq/l, fourth quarter (2.283 – 2.643).10-2 Bq/l. The radioactivity of comparison well water in the firs quarter was (2.931 - 2.931). 10-2 Bq/l., second quarter (2.162 – 2.550).10-2 Bq/l, third quarter (2.931- 2.931).10-2, fourth quarter (2.450 – 2.632).10-2 Bq/l. This result showed that there are no pollutant release into the environment. Based on the evaluation result using Storet and US-EPA (Environmental Protection Agency) method, water quality around tailing pond of PPGN – BATAN is expressed as A in class classification (best).

Page 1 of 18 | Total Record : 172