cover
Contact Name
Tika Hairani
Contact Email
jurnal@rmpi.brin.go.id
Phone
+6289674134425
Journal Mail Official
manessa@ui.ac.id
Editorial Address
Gedung S, BAKOSURTANAL, Jln. Raya Jakarta – Bogor Km 46 Cibinong, INDONESIA
Location
Kota bogor,
Jawa barat
INDONESIA
The International Journal of Remote Sensing and Earth Sciences (IJReSES)
ISSN : 02166739     EISSN : 2549516X     DOI : https://doi.org/10.55981/ijreses
Core Subject : Science,
The International Journal of Remote Sensing and Earth Sciences (IJReSES), published by Badan Riset dan Inovasi Nasional (BRIN) in collaboration with the Ikatan Geografi Indonesia (IGI) and managed by the Department of Geography Universitas Indonesia, is a pivotal platform in the global dissemination of research in earth sciences and remote sensing. It aims to enrich the literature in these fields and serves as a key resource, particularly in Indonesia and Asian countries, while extending its reach worldwide. The journal is instrumental in complementing the body of knowledge in Remote Sensing and Earth Sciences and is committed to fostering the participation of young scientists, especially from Indonesia and Asian countries. Scope and Focus: IJReSES encompasses a wide spectrum of topics related to remote sensing and earth sciences, including but not limited to: - Remote sensing technologies and methodologies - Geospatial data acquisition, processing, and analysis - Earth observation and satellite imagery - Geographic Information Systems (GIS) - Environmental monitoring and management - Climate change and its impacts - Natural resource management - Land use and land cover change - Urban and rural development - Disaster risk reduction and response - Geology and geomorphology - Soil and water sciences - Biodiversity and ecosystem studies
Articles 327 Documents
SITE SELECTION OF SEAWEED CULTURE USING SPOT AND LANDSAT SATELLITE DATA IN PARI ISLAND Bidawi Hasyim; Wawan K. Harsanugraha; Yennie Marini; Anneke K.S. Manoppo
International Journal of Remote Sensing and Earth Sciences Vol. 9 No. 2 (2012)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2012.v9.a1833

Abstract

One of several factors for seaweed culture success is to determine the suitable location for seaweed culture based on oceanographic parameters. The best location for seaweed culture is coastal waters with suitable requirements for total suspended solid (TSS), sea surface temperature (SST), and area with calm water that is sheltered from waves, strong current and predator, such as lagoon in the middle of an atoll. The purpose of this study was to locate the suitable area for seaweed culture in Pari island, Seribu island using SPOT and LANDSAT-TM data. The results showed that TSS in Pari island waters were in the range of 150 mg/l - 200 mg/l, SST in the range of 22-29°C, while coral reefs and lagoon was only available in some coastal locations. The analysis showed that most of Pari island waters were suitable for seaweed culture.
A COMPARISON OF OBJECT-BASED AND PIXEL-BASED APPROACHES FOR LAND USE/LAND COVER CLASSIFICATION USING LAPAN-A2 MICROSATELLITE DATA Jalu Tejo Nugroho; Zylshal; Nurwita Mustika Sari; Dony Kushardono
International Journal of Remote Sensing and Earth Sciences Vol. 14 No. 1 (2017)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2017.v14.a2680

Abstract

In recent years, small satellite industry has been a rapid trend and become important especially when associated with operational cost, technology adaptation and the missions. One mission of LAPAN-A2, the 2nd generation of microsatellite that developed by Indonesian National Institute of Aeronautics and Space (LAPAN), is Earth observation using digital camera that provides imagery with 3.5 m spatial resolution. The aim of this research is to compare between object-based and pixel-based classification of land use/land cover (LU/LC) in order to determine the appropriate classification method in LAPAN-A2 dataprocessing (case study Semarang, Central Java).The LU/LC were classified into eleven classes, as follows: sea, river, fish pond, tree, grass, road, building 1, building 2, building 3, building 4 and rice field. The accuracy of classification outputs were assessed using confusion matrix. The object-based and pixel-based classification methods result for overall accuracy are 31.63% and 61.61%, respectively. According to accuracy result, it was thought that blurring effect on LAPAN-A2 data may be the main cause ofaccuracy decrease. Furthermore, the result is suggested to use pixel-based classification to be applied inLAPAN-A2 data processing.
VERIFICATION OF PISCES DISSOLVED OXYGEN MODEL USING IN SITU MEASUREMENT IN BIAK, ROTE, AND TANIMBAR SEAS, INDONESIA Armyanda Tussadiah; Joko Subandriyo; Sari Novita; Widodo S. Pranowo
International Journal of Remote Sensing and Earth Sciences Vol. 14 No. 1 (2017)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2017.v14.a2681

Abstract

Dissolved oxygen (DO) is one of the most chemical primary data in supported life for marine organisms. Ministry of Marine Affairs and Fisheries Republic of Indonesia through Infrastructure Development for Space Oceanography (INDESO) Project provides dissolved oxygen data services in Indonesian Seas for 7 days backward and 10 days ahead (9,25 km x 9.25 km, 1 daily). The data based on Biogeochemical model (PISCES) coupled with hydrodynamic model (NEMO), with input data from satellite acquisition. This study investigated the performance and accuracy of dissolved oxygen from PISCES model, by comparing with the measurement in situ data in Indonesian Seas specifically in three outermost islands of Indonesia (Biak Island, Rote Island, and Tanimbar Island). Results of standard deviation values between in situ DO and model are around two (St.dev ± 2). Based on the calculation of linear regression between in situ DO with the standard deviation obtained a high determinant coefficient, greater than 0.9 (R2 ≥ 0.9). Furthermore, RMSE calculation showed a minor error, less than 0.05. These results showed that the equation of the linear regression might be used as a correction equation to gain the verified dissolved oxygen.
COASTAL UPWELLING UNDER THE INFLUENCE OF WESTERLY WIND BURST IN THE NORTH OF PAPUA CONTINENT, WESTERN PACIFIC Harold J.D.Waas; Vincentius P. Siregar; Indra Jaya; Jonson Lumban Gaol
International Journal of Remote Sensing and Earth Sciences Vol. 9 No. 2 (2012)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2012.v9.a1837

Abstract

Coastal upwelling play an important role in biological productivity and the carbon cycle in the ocean. This research aimed to examine the phenomenon of coastal upwelling that occur in the coastal waters north of Papua continent under the influence of Westerly Wind Burst(WWB) prior to the development of El Nino in the Pacific. Data consisted of sea surface temperature, vertical oceanic temperature, ocean color satellite image, wind stress and vector wind speed image, sea surface high, and Nino 3.4 index. Coastal upwelling events in the northern coastal waters of Papua continent occurred in response to westerly winds and westerly wind burst (WWBs) during December to March characterizing by low sea surface temperature (SST) (25 - 28ï‚°C), negative sea surface high deviation and phytoplankton blooming, except during pre-development of the El Nino 2006/2007 where weak upwelling followed by positive sea surface high deviation. Strong coastal upwelling occurred during two WWBs in December and March1996/1997 with maximum wind speed in March produced a strong El Nino 1997/1998. Upwelling generally occurred along coastal waters of Jayapura to Papua New Guinea with more intensive in coastal waters north of Papua New Guinea indicated by Ekman transport and Ekman layer depth maximum.
IN-SITU MEASUREMENT OF DIFFUSE ATTENUATION COEFFICIENT AND ITS RELATIONSHIP WITH WATER CONSTITUENT AND DEPTH ESTIMATION OF SHALLOW WATERS BY REMOTE SENSING TECHNIQUE Budhi Agung Prasetyo; Vincentius Paulus Siregar; Syamsul Bahri Agus; Wikanti Asriningrum
International Journal of Remote Sensing and Earth Sciences Vol. 14 No. 1 (2017)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2017.v14.a2682

Abstract

Diffuse attenuation coefficient, Kd(λ), has an empirical relationship with water depth, thus potentially to be used to estimate the depth of the water based on the light penetration in the water column. The aim of this research is to assess the relationship of diffuse attenuation coefficient with the water constituent and its relationship to estimate the depth of shallow waters of Air Island, Panggang Island and Karang Lebar lagoons and to compare the result of depth estimation from Kd model and derived from Landsat 8 imagery. The measurement of Kd(λ) was carried out using hyperspectral spectroradiometer TriOS-RAMSES with range 320 – 950 nm. The relationship between measurement Kd(λ) on study site with the water constituent was the occurrence of absorption by chlorophyll-a concentration at the blue and green spectral wavelength. Depth estimation using band ratio from Kd(λ) occurred at 442,96 nm and 654,59 nm, which had better relationship with the depth from in-situ measurement compared to the estimation based on Landsat 8 band ratio. Depth estimated based on Kd(λ) ratio and in-situ measurement are not significantly different statistically. Depth estimated based on Kd(λ) ratio and in-situ measurement are not significantly different statistically. However, depth estimation based on Kd(λ) ratio was inconsistent due to the bottom albedo reflection because the Kd(λ) measurement was carried out in shallow waters. Estimation of water depth based on Kd(λ) ratio had better results compared to the Landsat 8 band ratio.
DROUGHT AND FINE FUEL MOISTURE CODE EVALUATION: AN EARLY WARNING SYSTEM FOR FOREST/LAND FIRE USING REMOTE SENSING APPROACH Yenni Vetrita; Indah Prasasti; Nanik Suryo. Haryani; M. Priyatna; M. Rokhis Khomarudin
International Journal of Remote Sensing and Earth Sciences Vol. 9 No. 2 (2012)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2012.v9.a1841

Abstract

This study evaluated two parameters of fire danger rating system (FDRS) using remote sensing data i.e. drought code (DC) and fine fuel moisture code (FFMC) as an early warning program for forest/land fire in Indonesia. Using the reference DC and FFMC from observation data, we calculated the accuracy, bias, and error. The results showed that FFMC from satellite data had a fairly good correlation with FFMC observations (r=0.68, bias=7.6, and RMSE=15.7), while DC from satellite data had a better correlation with FFMC observations (r=0.88, bias=49.91, and RMSE=80.22). Both FFMC and DC from satellite and observation were comparable. Nevertheless, FFMC and DC satellite data showed an overestimation values than that observation data, particularly during dry season. This study also indicated that DC and FFMC could describe fire occurrence within a period of 3 months before fire occur, particularly for DC. These results demonstrated that remote sensing data can be used for monitoring and early warning fire in Indonesia.
TIME SERIES ANALYSIS OF TOTAL SUSPENDED SOLID (TSS) USING LANDSAT DATA IN BERAU COASTAL AREA, INDONESIA Ety Parwati; Anang Dwi Purwanto
International Journal of Remote Sensing and Earth Sciences Vol. 14 No. 1 (2017)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2017.v14.a2676

Abstract

Water quality information is usually used for the first examination of the pollution.  One of the parameters of water quality is Total Suspended Solid (TSS), which describes the amount of matter of particles suspended in the water. TSS information is also used as initial information about waters condition of a region. TSS could be derive from Landsat data with several combinations of spectral channels to evaluate the condition of the observation area for both the waters and the surrounding land. The study aimed to evaluate Berau waters condition in Kalimantan, Indonesia, by utilizing TSS dynamics extracted from Landsat data. Validated TSS extraction algorithm was obtained by choosing the best correlation between  field data and image data. Sixty pairs of points had been used to build validated TSS algorithms for the Berau Coastal area. The algorithm was TSS = 3.3238 * exp (34 099 * Red Band Reflectance). The data used for this study were Landsat 5 TM, Landsat 7 ETM and Landsat 8 data acquisition in 1994, 1996, 1998, 2002, 2004, 2006, 2008 and 2013. For detailed evaluation, 20 regions were created along the watershed up to the coast. The results showed the fluctuation of TSS values in each selected region. TSS value increased if there was a change of any kind of land cover/land used into bareland, ponds, settlements or shrubs. Conversely, TSS value decreased if there was a wide increase of mangrove area or its position was very closed to the ocean.
SIMULATION OF DIRECT GEOREFERENCING FOR GEOMETRIC SYSTEMATIC CORRECTION ON LSA PUSHBROOM IMAGER Muchammad Soleh; Wismu Sunarmodo; Ahmad Maryanto
International Journal of Remote Sensing and Earth Sciences Vol. 14 No. 1 (2017)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2017.v14.a2630

Abstract

LAPAN has developed remote sensing data collection by using a pushbroom linescan imager camera sensor mounted on LSA (Lapan Surveillance Aircraft). The position accuracy and orientation system for LSA applications are required for Direct Georeferencing and depend on the accuracy of off-the-shelf integrated GPS/inertial system, which used on the camera sensor. This research aims to give the accuracy requirement of Inertial Measurement Unit (IMU) sensor and GPS to improve the accuracy of the measurement results using direct georeferencing technique. Simulations were performed to produce geodetic coordinates of longitude, latitude and altitude for each image pixel in the imager pushbroom one array detector, which has been geometrically corrected. The simulation results achieved measurement accuracies for mapping applications with Ground Sample Distance (GSD) or spatial resolution of 0,6 m of the IMU parameter (pitch, roll and yaw) errors about 0.1; 0.1; and 0.1 degree respectively, and the error of GPS parameters (longitude and latitude) about 0.00002 and 0.2 degree. The results are expected to be a reference for a systematic geometric correction to image data pushbroom linescan imager that would be obtained by using LSA spacecraft.
ANALYSIS OF CRITICAL LAND IN THE MUSI WATERSHED USING GEOGRAPHIC INFORMATION SYSTEMS Danang Surya Candra
International Journal of Remote Sensing and Earth Sciences Vol. 8 (2011)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.ijreses.2011.v8.a1735

Abstract

Critical land is a land that is no longer functioning as a regulator of water, agricultural production elements and environmental protection elements. Owing to the fact that the analysis of critical land is usually carried out manually, the probability of errors in processing (human error) is very high. This research utilizes the Geographic Information System (GIS) technology to analyze critical area in protected forest area of Musi Watershed. The application of GIS technology, enables the analysis of critical land according to standard of critical land criteria. The results show that the very critical level area in protected forest area of Musi Watershed is 1.7%. The dominant level is in critical potential area (53.34%).
Back Pages IJReSES Vol. 14, No. 1(2017) Editorial Journal
International Journal of Remote Sensing and Earth Sciences Vol. 14 No. 1 (2017)
Publisher : BRIN

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Back Pages IJReSES Vol. 14, No. 1(2017)