cover
Contact Name
Yuni Yulida
Contact Email
y_yulida@ulm.ac.id
Phone
+6281348054202
Journal Mail Official
epsilon@ulm.ac.id
Editorial Address
Mathematics Department, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University. Jl. A. Yani KM.35.8 Banjarbaru, Kalimantan Selatan
Location
Kota banjarmasin,
Kalimantan selatan
INDONESIA
Epsilon: Jurnal Matematika Murni dan Terapan
ISSN : 19784422     EISSN : 26567660     DOI : http://dx.doi.org/10.20527
Jurnal Matematika Murni dan Terapan Epsilon is a mathematics journal which is devoted to research articles from all fields of pure and applied mathematics including 1. Mathematical Analysis 2. Applied Mathematics 3. Algebra 4. Statistics 5. Computational Mathematics
Articles 6 Documents
Search results for , issue "Vol. 15(2), 2021" : 6 Documents clear
APLIKASI PERSAMAAN GELOMBANG UNTUK MENENTUKAN KARAKTERISTIK GELOMBANG SENAR GITAR YANG DIPETIK Yuni Yulida; Haidir Ahsana; Muhammad Mahfuzh Shiddiq; Muhammad Ahsar Karim
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 15(2), 2021
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (746.422 KB) | DOI: 10.20527/epsilon.v15i2.4735

Abstract

Partial differential equations are often used to explain physical phenomena, one of which is the wave equation. One application of the wave equation is in plucked strings. This study describes the formation of a wave equation from guitar strings, determines the solution to the wave equation by using the variable separation method and certain boundary conditions and initial conditions, determines the amplitude of the wave, and simulates the movement of the wave based on the initial position of the plucked string. The result obtained is the wave equation of the guitar strings. When the string is plucked, the string will vibrate and produce a wave that can be formulated as a wave equation in the form of a homogeneous second order partial differential equation. The solution to this equation is in the form of a series. If given the initial conditions of plucking in the form of a function, then the amplitude of the wave is obtained. Simulations are given to see the movement of the amplitude and wave on the strings through three cases of the initial position of plucking the strings, namely: less than half, half, and more than half the length of the strings. The behavior of these amplitudes and waves is a characteristic or characteristic of the waves produced from a plucked guitar string
MODEL MANGSA-PEMANGSA DENGAN FUNGSI RESPON HOLLING DAN PEMANENAN Mustika Khadijah; Yuni Yulida; Dewi Sri Susanti
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 15(2), 2021
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (235.698 KB) | DOI: 10.20527/epsilon.v15i2.4593

Abstract

The mathematical model of prey-predator interaction is one of the stages of solving mathematical problems by simplifying events that occur in mathematical form. In this research, we discuss a prey-predator model using a type II Holling response function without harvesting and a prey-predator model using a type II Holling response function with harvesting. The purpose of this research was to explain the formation of a prey-predator model with a type II Holling response and a preypredator model with a type II Holling response with harvesting, to determine the stability at the equilibrium point of the model, and to create a model simulation using several sample parameters. The results obtained were three equilibrium points for the prey-predator model with type II Holling response without harvesting and two equilibrium points for the prey-predator model with type II Holling response with harvesting. The stability at two equilibrium points of the prey-predator model using the type II Holling response function without harvesting was asymptotically stable and the stability at one equilibrium point in the prey-predator model using the type II Holling response function in the presence of harvesting in the prey population was asymptotically stable. The comparison of numerical simulations showed that the number of predator population without harvesting was greater than the number of predator population with harvesting.
MODULAR BLOK DI RUANG BARISAN TERJUMLAH CESARO ORLICZ Haryadi Haryadi
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 15(2), 2021
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (283.081 KB) | DOI: 10.20527/epsilon.v15i2.4330

Abstract

On the Cesaro summable of orde-p sequence space, if the fuction  is replaced by Orlicz function, it is not always easy to define norm in the space. In this paper, we study some properties of the Cesaro Orlicz summable sequence space. First, on the space we define a modular and its the luxemburg norm, and then some topological properties is explored. The results show that the sequence spaces is modular complete and nom complete. In addition, the space is a BK-space but not an AK-space. 
INTERIOR IDEAL FUZZY SEMIRING Saman Abdurrahman
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 15(2), 2021
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (265.901 KB) | DOI: 10.20527/epsilon.v15i2.4894

Abstract

Semiring is one of the ring extensions, which eliminates the inverse axiom in the first operation. One of the topics on the semiring is the ideal interior. This study introduces the concept of the ideal interior semiring and the ideal interior fuzzy semiring. Further, it examined the properties of the ideal fuzzy semiring interior and the nature of the existence of the ideal interior semiring if the ideal fuzzy interior is given.
PREDIKSI INDEKS HARGA SAHAM GABUNGAN (IHSG) MENGGUNAKAN LONG SHORT-TERM MEMORY Akhmad Yusuf
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 15(2), 2021
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (320.262 KB) | DOI: 10.20527/epsilon.v15i2.5026

Abstract

Pasar modal merupakan tempat bertemunya pihak penjual dan pembeli serta dapat dijadikan sebagai indicator kemajuan suatu negara. Semakin tinggi pergerakan atau aktifitas di pasar modal maka semakin tinggi pula pergerakan ekonomi di suatu Negara tersebut. Bursa Efek Indonesia (BEI) merupakan pasar modal yang terdapat di Indonesia. Index harga saham gabungan (IHSG) merupakan rata-rata harga saham keseluruhan yang berada di Bursa Efek Indonesia (BEI) dan memiliki volatilitas yang tinggi sehingga diperlukan suatu metode untuk memprediksi pergerakan harga IHSG tersebut yang dapat dijadikan sebagai acuan bagi para pembeli (pihak surplus dana). Long Short-Term Memory (LSTM) merupakan sebuah metode forecasting yang dapat digunakan untuk memprediksi data yang bersifat time series.  Pada penelitian ini, data yang digunakan berjumlah 1212 data pada interval waktu 16 Februari 2017 sampai 14 Februari 2022 dengan time frame 1D. Data terbagi menjadi 2 bagian, yaitu data training berjumlah dan data testing berjumlah data. Parameter LSTM yang digunakan batch-size 25 dan untuk menguji keberhasilan parameter tersebut digunakan epoch yang berbeda-beda. Epoch sejumlah 50 merupakan model terbaik menghasilkan RMSE lebih kecil yaitu 6.2335 dengan nilai prediksi 6765.5103 dan nilai actual 6807.50
INVERS TERGENERALISASI MOORE PENROSE Mardiyana Mardiyana; Na'imah Hijriati; Thresye Thresye
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 15(2), 2021
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (113.628 KB) | DOI: 10.20527/epsilon.v15i2.3667

Abstract

The generalized inverse is a concept for determining the inverse of a singular matrix and and  matrix which has the characteristic of the inverse matrix. There are several types of generalized inverse, one of which is the Moore-Penrose inverse. The matrix  is called Moore Penrose inverse of a matrix if it satisfies the four penrose equations and is denoted by . Furthermore, if the matrix  satisfies only the first two equations of the Moore-Penrose inverse and , then  is called the group inverse of  and is denoted by . The purpose of this research was to determine the group inverse of a non-diagonalizable square matrix using Jordan’s canonical form and Moore Penrose’s inverse of a singular matrix, also a non-square matrix using the Singular Value Decomposition (SVD) method. The results of this study are the sufficient condition for a matrix  to have a group inverse, i.e., a matrix  has an index of 1 if and only if the product of two matrices forming  is a full rank factorization and is invertible. Whereas for a singular matrix  and a non-square , the Moore-Penrose inverse can be determined using Singular Value Decomposition (SVD).                                                           Keywords: generalized matrix inverse, Moore Penrose inverse, group inverse, Jordan canonical form, Singular Value Decomposition.

Page 1 of 1 | Total Record : 6