Claim Missing Document
Check
Articles

Found 32 Documents
Search

ANALISIS RESPON MAHASISWA TERHADAP PENERAPAN PENDEKATAN ETNOMATEMATIKA (POLA KAIN SASIRANGAN) PADA PEMBELAJARAN STRUKTUR ALJABAR Dewi Sri Susanti; Na'imah Hijriati; Rahmi Hidayati; Raihan Nooriman; Geofani Setiawan
AKSIOMA: Jurnal Program Studi Pendidikan Matematika Vol 11, No 1 (2022)
Publisher : UNIVERSITAS MUHAMMADIYAH METRO

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (975.209 KB) | DOI: 10.24127/ajpm.v11i1.4486

Abstract

Penelitian ini bertujuan untuk mengukur efektivitas pembelajaran aljabar dengan menerapkan model discovery learning dengan pendekatan etnomatematika. Konsep etnomatematika yang dimaksud adalah dengan mengaitkan materi tentang grup dengan pola kain sasirangan yang merupakan kain khas dari Kalimantan Selatan. Respon mahasiswa atas proses pembelajaran tersebut diamati dari persepsi selama pembelajaran berlangsung dan hasil penilaian yang diperoleh setelah pembelajaran. Persepsi mahasiswa dirangkum melalui kuesioner yang didalamnya memuat komponen penilaian untuk dosen pengajar yaitu aspek pedagogis dan profesional, sedangkan tingkat pemahaman mahasiswa diukur melalui butir-butir pertanyaan yang memuat aspek afektif dan kognitif. Aspek psikomotorik dievaluasi melalui penilaian video pembelajaran yang dihasilkan mahasiswa. Efektivitas pembelajaran terukur melalui signifikasi peningkatan nilai ujian sebelum dan setelah metode pengajaran diterapkan. Subyek penelitian ini adalah mahasiswa peserta pembelajaran mata kuliah Struktur Aljabar. Dari hasil penelitian menunjukkan bahwa pelaksanaan pembelajaran mata kuliah Struktur Aljabar dengan pendekatan etnomatematika telah memberikan peningkatan kemampuan mahasiswa yang signifikan baik dari sisi kognitif, afektif dan psikomotorik. Hal ini terukur dari respon mahasiswa dalam angket pembelajaran, bukti penyelesaian tugas video pembelajaran dan hasil nilai yang diperoleh mahasiswa. Penilaian untuk dosen pengajar juga memberikan hasil yang positif dari sisi pedagogis dan sisi profesionalitas.Improving the ability of mathematical understanding can be conduted by building different learning nuances. If so far the learning process has focused more on the teacher/lecturer (teacher center), a solution is needed to improve student understanding, one of which is by applying discovery learning learning techniques, where students can find their own formulas in learning & reasoning. Along with the desire to raise cultural values in the learning process, the ethnomathematical approach to learning is one of the best solutions to motivate students. This method is a collaborative discovery learning model with an ethnomathematical approach. namely the sasirangan cloth. After taking an ethnomathematical approach in the learning process, especially on topic of special groups, students are asked to provide an assessment of the learning process. The implementation of the Algebraic Structure learning course with an ethnomathematical approach has provided a significant increase in student abilities in terms of cognitive, affective and psychomotor. This is measured from student responses in learning questionnaires, evidence of completion of learning video assignments and the test results. Assessment for teaching lecturers also gave positive results from the pedagogical and professional side.
KOREPRESENTASI KOALJABAR F [G] Na’imah Hijriati; Indah Emilia Wijayanti
Pattimura Proceeding 2021: Prosiding KNM XX
Publisher : Pattimura University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1775.147 KB) | DOI: 10.30598/PattimuraSci.2021.KNMXX.33-40

Abstract

Abstrak. Diberikan grup berhingga G dan lapangan F . Aljabar grup F [G] merupakan suatu ring sekaligus merupakan ruang vektor atas F . Diketahui, jika ruang vektor V atas F merupakan modul atas aljabar grup F [G] maka selalu dapat dikonstruksi suatu representasi ring F [G] terhadap V , yakni suatu homomorfisma ring dari F [G] ke ring semua tranformasi linear pada V . Lebih lanjut, diketahui juga F [G] dan ring semua transformasi linear pada V merupakan koaljabar atas F . Berdasarkan hal ini, jika suatu ruang vektor atas F merupakan komodul atas F [G] maka muncul permasalahan apakah dapat dikonstruksi suatu homomorfisma koaljabar dari F [G] ke koajabar semua transformasi linear pada ruang vektor tersebut. Oleh karena itu, pada tulisan ini akan diberikan pengkonstruksian homomorfisma koajabar F [G] terhadap suatu ruang vektor atas F . Selanjutnya, homomorfisma koaljabar F [G] disebut korepresentasi koaljabar F [G] terhadap suatu ruang vektor atas F .
IDEAL FUZZY NEAR-RING Saman Abdurrahman; Na'imah Hijriati; Thresye Thresye
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 6, No 2 (2012): JURNAL EPSILON VOLUME 6 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (314.346 KB) | DOI: 10.20527/epsilon.v6i2.83

Abstract

In this paper will be discussed ideal near-ring, ideal fuzzy near-ring covering the relationship between ideal near-ring and ideal fuzzy near-ring.
GRUP RING Aisjah Juliani Noor; Naimah Hijriati
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 4, No 1 (2010): JURNAL EPSILON VOLUME 4 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (176.723 KB) | DOI: 10.20527/epsilon.v4i1.46

Abstract

The RG ring group is the set formed from group G below multiplication operations of finite elements and commutative rings. R with elements unit. If defined the operation of addition and operation of doubling in RG respectively                      i I i i i i I i i i I i a g a g (a b) g and                           i I i g g g j k i I i i i I i i g a b g a b g j k i () for each a g b g RG i I i i i I i i      , then RG is a ring. Based on the definition of RG formed from two structures that have certain properties, then the properties of RG depend on R and G forming them, namely: a. Every element in R is commutative with each element in RG and in unit elements R is a unit element in RG b. Every element in G has a doubling inverse in RG c. RG is commutative if and only if G is commutative d. If S subring of R and H subgroups of G, then SG and RH are subring-subring from RG.
SYARAT PERLU DAN SYARAT CUKUP MATRIKS BERSIH PADA ????????????????(ℤ) Rohmalita Rohmalita; Na'imah Hijriati; Saman Abdurrahman
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 8, No 2 (2014): JURNAL EPSILON VOLUME 8 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (203.932 KB) | DOI: 10.20527/epsilon.v8i2.111

Abstract

This paper describes the condition of a net matrix at ????????2 (ℤ) and describes the terms and conditions of sufficient net matrix at ????????2 (ℤ). The result of this study is, ???????? is the 1-net matrix if and only if ???????????????????????? (????????) -???? ???????? (????????) = 0 or -2. Then ???????? is the 0-net matrix if and only if ???????? is the unit matrix, or satisfies one of the equations ???????????? -????????????????-???????? + ???????????????? = ± 1, ???????????? -????????????????-???????? + ???????????????? = ± 1, ????-????????????????????2 + ( ????????-????????) ???????????????? + (????) ???? 2+ (????????) ???????? + (???????????? -????????????????-???????? ± 1) ???? = 0. And the requirement of ???????? is sufficient and ???????? is a 0-net matrix ie if ???????? = ????????????????????00????∈????????2 (ℤ) is a 0-net matrix then ???????? is a 0-net matrix.
KONSTRUKSI SEMIGRUP REGULER DENGAN TRANSVERSAL INVERS IDEAL KUASI Thresye Thresye; Na'imah Hijriati
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 5, No 1 (2011): JURNAL EPSILON VOLUME 5 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (176.825 KB) | DOI: 10.20527/epsilon.v5i1.70

Abstract

A transversal inverse o S of a regular semigrup S is called a quasi ideal transversal inverse or Q-transversal inverse if o o o S SS  S where o S is the quasi ideal of S. Let S is a regular semigrup with transversal invers o S which is the quasi ideal of S. For example  o o oo R  xS: x x  x x and eg  o oo o L  aS: aa  a a, then R and L is an orthodox semigrup with transverse inverse o S which is ideal right of R and is the left ideal of L. Can be constructed regular semigrup with transversal inverse ideal quasi-shaped    o o R L  x, a  R L: x  a .It is connected with a band, then a regular semigrup with transverse inverse ideal quasi-shaped   o o R B  x, e R B: x x  e
IDEAL DIFERENSIAL DAN HOMOMORFISMA DIFERENSIAL Na'imah Hijriati; Saman Abdurrahman; Thresye Thresye
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 6, No 2 (2012): JURNAL EPSILON VOLUME 6 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (310.921 KB) | DOI: 10.20527/epsilon.v6i2.84

Abstract

Ideal differential is the ideal of differential ring that satisfies if for each a  I, and every   ,  (a)  I, whereas the differential homomorphism is a commutative homomorphism of rings against each derivation. This paper is presented the properties of differential ideal and differential homomorphism.
METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERSAMAAN PANAS Andi Tri Wardana; Yuni Yulida; Na’imah Hijriati
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 9, No 2 (2015): JURNAL EPSILON VOLUME 9 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (164.102 KB) | DOI: 10.20527/epsilon.v9i2.14

Abstract

The differential equation is an equation in which there is a derivative of one or more independent variables. The differential equation can be divided into two groups, Ordinary differential equation and Partial differential equation. One method for solving ordinary differential equations is the Adomian Decomposition Method which is used to facilitate in the solving of ordinary nonlinear differential equations. Adomian decomposition method is a method that can also be used to determine the solution of partial differential equations, one of which can be applied to the heat equation. This study was conducted using literature study. The results of this study show that the solution of the linear heat equation is: 1100 (,) (,) (, 0) (,) (,) nttxxnnnuxtuxtuxLgxtLLuxt∞∞ - ==  == ++ ΣΣ with 10 ( ,) (, 0) (,) tuxtuxLgxt - = + and 1 (,) (,), 1,2,3, ... ntxxnuxtLLuxtn - == and the solution of nonlinear heat equation is: 11000 (,) (,) (, 0) (,) (,) ntxxntnnnnuxtuxtuxLLuxtLAxt∞∞∞ - ===== ++ ΣΣΣ with 0 (,) (, 0) uxtux = and 111 (,) (,) (,), 0,1,2, ... ntxxntnuxtLLuxtLAxtn - + = + =
FORMULA BINET DAN JUMLAH n SUKU PERTAMA PADA GENERALISASI BILANGAN FIBONACCI DENGAN METODE MATRIKS Purnamayanti Purnamayanti; Thresye Thresye; Na'imah Hijriati
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 6, No 1 (2012): JURNAL EPSILON VOLUME 6 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (254.274 KB) | DOI: 10.20527/epsilon.v6i1.80

Abstract

Fibonacci numbers are defined as sequences of precise numbers is the sum of the previous two tribes. Binet in 1875 proposes an Fn formula capable of calculating the nth number of numbers it is faster without having to recalculate as much as n times, which then known as Binet formulas or formulas. The purpose of this study is to learn the formation of the Binet formula, forming a generalization of Binet formulas on Fibonacci numbers p-degree, look for the number of n tribes first in Fibonacci numbers p-degree with linear algebraic approach especially the use of matrices.
ANTI SUBGRUP α-FUZZY Fiqriani Noor; Saman Abdurrahman; Naimah Hijriati
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 14, No 1 (2020): JURNAL EPSILON VOLUME 14 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (343.343 KB) | DOI: 10.20527/epsilon.v14i1.2199

Abstract

The concept of fuzzy subgroups is a combination of the group structure with the fuzzy set, which was first introduced by Rosenfeld (1971). This concept became the basic concept in other the fuzzy algebra fields such as fuzzy normal subgroups, anti fuzzy subgroups and anti fuzzy normal subgroups. The development in the area of fuzzy algebra is characterized by the continual emergence of new concepts, one of which is the α-anti fuzzy subgroup concept. The idea of α-anti fuzzy subgroups is a combination between the α-anti fuzzy subset and anti fuzzy subgroups. The α-anti subset fuzzy which is an anti fuzzy subgroup is called as α-anti fuzzy subgroup. The purpose of this study is to prove that the α-anti fuzzy subset is an anti fuzzy subgroup, examine the relationship between α-anti fuzzy subgroups with anti fuzzy subgroups and α-fuzzy normal subgroups with anti fuzzy subgroups. The results of this study are, if A is an anti fuzzy subgroup (an anti fuzzy normal subgroup), then an α-anti subset fuzzy of A is an anti fuzzy subgroup (an anti fuzzy normal subgroup). However, this does not apply otherwise. Furthermore, this study also provides sufficient and necessary conditions for an α-anti fuzzy subset of any group to be an α-anti fuzzy subgroup and the formation of a group of factors that are built from an α-anti fuzzy normal subgroup.Keywords : Anti Fuzzy Subgroup, Anti Fuzzy Normal Subgroup, α-Anti Fuzzy Subgroup and α-Anti Fuzzy Normal Subgroup.