Bulletin of Chemical Reaction Engineering & Catalysis
Bulletin of Chemical Reaction Engineering & Catalysis (e-ISSN: 1978-2993), an international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics studies, and chemical reaction engineering.
Articles
524 Documents
Reduction of Peroxide Value and Free Fatty Acid Value of Used Frying Oil Using TiO2 Thin Film Photocatalyst
Ummi Kaltsum;
Affandi Faisal Kurniawan;
Iis Nurhasanah;
Priyono Priyono
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 3 Year 2016 (December 2016)
Publisher : Department of Chemical Engineering - Diponegoro University
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (492.641 KB)
|
DOI: 10.9767/bcrec.11.3.577.369-375
The quality of used frying oil degraded due to the presence of products degradation, such as; PV and FFA which formed during the frying process. PV and FFA are harmful to human health. The photocatalytic activity of TiO2 thin film has been applied in various fields, especially in the environment. The aim of this study is to evaluate photocatalytic activity of TiO2 thin film for reducing PV and FFA in used frying oil. The TiO2 thin films were deposited on glass substrate by spray coating method at a temperature of 450 oC. The TiO2 precursor solution was prepared by mixing TTiP, AcAc, and ethanol. The thin films were varied into two conditions; as-deposited and annealed at a temperature of 500 oC. The morphology, crystalline structure, and optical properties of the thin films were characterized by scanning electron microscope (SEM), X-ray Diffraction (XRD), and UV-VIS spectrophotometer, respectively. The photocatalytic process was carried out by putting TiO2 thin film in used frying oil and irradiated by sunlight. The result showed that both of TiO2 thin films were still amorphous in nature. However, there was a peak with low intensity for annealed TiO2 thin film which corresponding to the TiO2 anatase crystals plane of (101). Annealing process improved crystallinity and changed the shape morphology of TiO2 thin films. The band gap was found to be 3.59 eV for as-deposited TiO2 thin film and 3.49 eV for the annealed-TiO2 thin film. The photocatalytic process shows that TiO2 thin films reduced FFA and PV of used frying oil up to 67.10% and 79.15%, respectively. Photocatalytic activity of annealed TiO2 thin film was higher than as-deposited TiO2 thin film. The results indicated that TiO2 thin film photocatalyst potential as the new alternative method to purify used frying oil.
Silica-Supported Co3O4 Nanoparticles as a Recyclable Catalyst for Rapid Degradation of Azodye
Ali Baghban;
Esmail Doustkhah;
Sadegh Rostamnia;
Khadijeh Ojaghi Aghbash
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 3 Year 2016 (December 2016)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (818.813 KB)
|
DOI: 10.9767/bcrec.11.3.568.284-291
In this paper, silica nanoparticles with particle size of ~ 10-20 nm were selected as a support for the synthesis of Co3O4 nanoparticles by impregnation of silica nanoparticles in solution of Co(II) in a specific concentrations and then calcination to 800 oC. This nanocomposite was then, used as a catalyst for oxidative degradation of methyl orange (MO) with ammonium persulfate in aqueous media. Effect of pH, temperature, contact time, amount of oxidant and catalyst were studied in the presence of manuscript. Scanning electron microscope (SEM), electron dispersive spectroscopy (EDS), FT-IR, and ICP-AES analyses were used for analysis of silica-supported Co3O4 (Co3O4/SiO2). Treating MO with ammonium persulfate in the presence of Co3O4/SiO2 led to complete degradation of MO under the optimized conditions. Also, the catalyst exhibited recyclability at least over 10 consecutive runs.
Photocatalytic Degradation of Methyl Orange on Bi2O3 and Ag2O-Bi2O3 Nano Photocatalysts
Seyed Ali Hosseini;
Ramin Saeedi
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 1 Year 2017 (April 2017)
Publisher : Department of Chemical Engineering - Diponegoro University
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (37.376 KB)
|
DOI: 10.9767/bcrec.12.1.623.96-105
The photocatalytic activity of Bi2O3 and Ag2O-Bi2O3 was evaluated by degradation of aqueous methyl orange as a model dye effluent. Bi2O3 was synthesized using chemical precipitation method. Structural analysis revealed that Bi2O3 contain a unique well-crystallized phase and the average crystallite size of 22.4 nm. The SEM analysis showed that the size of Bi2O3 particles was mainly in the range of 16-22 nm. The most important variables affecting the photocatalytic degradation of dyes, namely reaction time, initial pH and catalyst dosage were studied, and their optimal amounts were found at 60 min, 5.58 and 0.025 g, respectively. A good correlation was found between experimental and predicted responses, confirming the reliability of the model. Incorporation of Ag2O in the structure of composite caused decreasing band gap and its response to visible light. Because a high percentage of sunlight is visible light, hence Ag2O-Bi2O3 nano-composite could be used as an efficient visible light driven photocatalyst for degradation of dye effluents by sunlight.
Characterization of Ag-promoted Ni/SiO2 Catalysts for Syngas Production via Carbon Dioxide (CO2) Dry Reforming of Glycerol
Norazimah Harun;
Jolius Gimbun;
Mohammad Tazli Azizan;
Sumaiya Zainal Abidin
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 2 Year 2016 (August 2016)
Publisher : Department of Chemical Engineering - Diponegoro University
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (885.151 KB)
|
DOI: 10.9767/bcrec.11.2.553.220-229
The carbon dioxide (CO2) dry reforming of glycerol for syngas production is one of the promising ways to benefit the oversupply crisis of glycerol worldwide. It is an attractive process as it converts carbon dioxide, a greenhouse gas into a synthesis gas and simultaneously removed from the carbon biosphere cycle. In this study, the glycerol dry reforming was carried out using Silver (Ag) promoted Nickel (Ni) based catalysts supported on silicon oxide (SiO2) i.e. Ag-Ni/SiO2. The catalysts were prepared through wet impregnation method and characterized by using Brunauer-Emmett-Teller (BET) surface area, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and Thermo Gravimetric (TGA) analysis. The experiment was conducted in a tubular reactor which condition fixed at 973 K and CO2:glycerol molar ratio of 1, under atmospheric pressure. It was found that the main gaseous products are H₂, CO and CH4 with H₂:CO molar ratio < 1.0. From the reaction study, Ag(5)-Ni/SiO2 results in highest glycerol conversion and hydrogen yield, accounted for 32.6% and 27.4%, respectively.
Preparation and Characterization of Sugar Based Catalyst on Various Supports
Jidon Adrian Janaun;
Tan Jaik Mey;
Awang Bono;
Duduku Krishnaiah
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 1 Year 2017 (April 2017)
Publisher : Department of Chemical Engineering - Diponegoro University
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (335.366 KB)
|
DOI: 10.9767/bcrec.12.1.478.41-48
A novel structured carbon-based acid catalyst was prepared by depositing the carbon precursor onto glass, ceramic and aluminum supports via dip-coating method, followed by carbonization process for converting the d-glucose layer into black carbon char in an inert nitrogen environment at 400 °C. Then, the –SO3H group was introduced into the framework of the carbon char by multiple vapor phase sulfonation. Four different carbonization methods were carried out (dry pyrolysis and hydrothermal carbonization with or without pressurized) in the catalyst preparation while among the carbonization methods, the samples which prepared from dry pyrolysis without pressurized process showed the strong acidity due to highest adsorption of acid group in the catalyst surface although the catalyst attached onto the support was the least compared to other preparation methods. Among the catalysts, the sulfonated carbon-base catalyst that is attached on the ceramic support exhibited the highest aci-dity (1.327 mmol/g) followed by the catalyst deposited on the glass (0.917 mmol/g) and aluminum (0.321 mmol/g) supports. The porous structure of ceramic surface, allowed a better interaction between reactants and –SO3H site in the carbon. Through the FT-IR analysis, it was observed that the functional groups –COOH, –OH, and –SO3H were present in the active sites of the catalysts. The surface areas of glass (Si–SC), ceramic (Ce–SC) and aluminum (Al–SC) catalysts were larger than 1 m2/g, whereas the pore size belongs to macroporous as the average pore size is more than 50 nm. It is also stable within the temperature of 400 °C as there was less than 10% weight loss revealed from the TGA analysis.
Formulation of SrO-MBCUS Agglomerates for Esterification and Transesterification of High FFA Vegetable Oil
Prashant Kumar;
Anil Kumar Sarma;
Ajay Bansal;
Mithilesh Kumar Jha
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 2 Year 2016 (August 2016)
Publisher : Department of Chemical Engineering - Diponegoro University
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (696.262 KB)
|
DOI: 10.9767/bcrec.11.2.540.140-150
Musa Balbisiana Colla Underground Stem (MBCUS) catalyst was treated thermally mixing with 5:1 w/w of Strontium Oxide (SrO) and the dynamic sites were reformed. The MBCUS-SrO showed sharper crystalline phases as evidence from XRD and TEM analysis. The composition and morphology were characterized from BET, SEM, EDX thermo-gravimetric analysis (TGA) and XRF analysis. The optimization process for biodiesel production from Jatropha curcas L oil (JCO) having high percentage of free fatty acids was carried out using orthogonal arrays adopting the Taguchi method. The linear equation was obtained from the analysis and subsequent biodiesel production (96% FAME) was taken away from the JCO under optimal reaction conditions. The biodiesel so prepared had identical characteristics to that with MBCUS alone, but at a lower temperature (200˚C) and internal vapour pressure. Metal leaching was much lower while reusability of the catalyst was enhanced. It was also confirmed that the particle size has little impact upon the conversion efficacy, but the basic active sites are more important.
Surface Modification of Macroporous Matrix for Immobilization of Lipase for Fructose Oleic Ester Synthesis
Hani Hilmanto;
Chusnul Hidayat;
Pudji Hastuti
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 3 Year 2016 (December 2016)
Publisher : Department of Chemical Engineering - Diponegoro University
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (512.846 KB)
|
DOI: 10.9767/bcrec.11.3.573.339-345
The objective of this research was to modify the matrix surfaces to obtain both hydrophobic matrix (HM) and hydrophilic-hydrophobic matrix (HHM) for enzymatic synthesis of fructose oleic ester (FOE). The modification was performed by the attachment of 2-phenylpropionaldehyde (PPA) and PPA followed by polyethyleneimine (PEI) for HM and HHM, respectively. The results from FT-IR analysis showed that the peak of stretching vibration of NH2 bond decreased and it was followed by an increase of the peak vibration of –C=N– bond at wave number 1667 cm-1. The peak of bending vibrations of the C=C bond also increased. It indicated that PPA was successfully attached on matrix. For HHM, an increase in the peak area of NH2 bond indicated that PEI was also successfully attached on the matrix. The optimum conditions of lipase adsorption were obtained at buffer pH 7 containing 0.5 M NaCl (9.27 mg protein/g matrix) and without NaCl (9.23 mg protein/g matrix) for HM and HHM, respectively. For FOE synthesis, the best immobilized lipase concentration was about 8% and 6% for HM and HHM, respectively. The optimum time of esterification was 24 h and 18 h for HM and HHM, respectively, in which the yields were 75.96% and 85.29%, respectively. The immobilized lipase could be used up to 3 cycles of esterification reaction.
Characterization and Application of Aluminum Dross as Catalyst in Pyrolysis of Waste Cooking Oil
Faten Hameed Kamil;
Ali Salmiaton;
Raja Mohamad Hafriz Raja Shahruzzaman;
R. Omar;
Abdulkareem Ghassan Alsultsan
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 1 Year 2017 (April 2017)
Publisher : Department of Chemical Engineering - Diponegoro University
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.9767/bcrec.12.1.557.81-88
Aluminium dross, a waste material produced by dissolution of aluminum scrap, was characterized physically and chemically by various analysis techniques for a potential to be used as catalyst. Using catalyst from waste materials reduced the cost for synthesizing of new catalyst. An efficient catalyst derived from industrial solid waste was modified by acid washing for using in a pyrolysis of waste cooking oil. The modification of aluminum dross resulted in increased surface area (from 0.96 to 68.24 m2/g), acidity (from 315 to 748 µmol/g) and thermal stability. Pyrolysis waste cooking oil was used to test the performance of aluminum dross as catalyst before and after modification. The product analysis showed a better result than the unmodified material based on increased yield of bio-oil and improved selectivity.
A Preliminary Study: Esterification of Free Fatty Acids (FFA) in Artificially Modified Feedstock Using Ionic Liquids as Catalysts
Nurul Asmawati Roslan;
Mohammad Haniff Che Hasnan;
Norhayati Abdullah;
Syamsul Bahari Abdullah;
Sumaiya Zainal Abidin
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 2 Year 2016 (August 2016)
Publisher : Department of Chemical Engineering - Diponegoro University
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (596.69 KB)
|
DOI: 10.9767/bcrec.11.2.549.182-190
The exploration of non-edible oils as a feedstock has been positively affect the economic viability of biodiesel production. Due to the high level of free fatty acid (FFA) in non-edible oils, esterification is needed to remove the acidity to the minimum level before base-catalyzed transesterification. In this study, 1-hexyl-3-methylimidazolium hydrogen sulphate (HMIMHSO4) was self-synthesized and compared with the commercialized ionic liquid, 1-butyl-3-methylimidazolium hydrogen sulphate (BMIMHSO4). HMIMHSO4 and BMIMHSO4 were characterized by 1H NMR prior to use in the esterification reaction. The reaction was carried out in a batch reactor and variables such as types of alcohol, oil: alcohol molar ratio, temperature and types of stirring were investigated. The highest conversion for each catalyst was achieved using ethanol as a solvent at the condition of 343 K reaction temperature, 12:1 alcohol to oil ratio in 8 h reaction time. BMIMHSO4 showed higher conversion (98%) as compared to HMIMHSO4 with only 82% conversion. Clearly, BMIMHSO4 shows considerable potential to reduce the FFA in the feedstock as it is exhibit excellent catalytic activity due to lower alkyl chain of BMIMHSO4 compared to HMIMHSO4.
Advanced Chemical Reactor Technologies for Biodiesel Production from Vegetable Oils - A Review
Luqman Buchori;
Istadi Istadi;
Purwanto Purwanto
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 3 Year 2016 (December 2016)
Publisher : Department of Chemical Engineering - Diponegoro University
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (475.793 KB)
|
DOI: 10.9767/bcrec.11.3.490.406-430
Biodiesel is an alternative biofuel that can replace diesel oil without requiring modifications to the engine and advantageously produces cleaner emissions. Biodiesel can be produced through transesterification process between oil or fat and alcohol to form esters and glycerol. The transesterification can be carried out with or without a catalyst. The catalyzed production of biodiesel can be performed by using homogeneous, heterogeneous and enzyme. Meanwhile, non-catalytic transesterification with supercritical alcohol provides a new way of producing biodiesel. Microwave and ultrasound assisted transesterification significantly can reduce reaction time as well as improve product yields. Another process, a plasma technology is promising for biodiesel synthesis from vegetable oils due to very short reaction time, no soap formation and no glycerol as a by-product. This paper reviews briefly the technologies on transesterification reaction for biodiesel production using homogeneous, heterogeneous, and enzyme catalysts, as well as advanced methods (supercritical, microwave, ultrasonic, and plasma technology). Advantages and disadvantages of each method were described comprehensively.