cover
Contact Name
Eko Handayanto
Contact Email
handayanto@ub.ac.id
Phone
-
Journal Mail Official
handayanto@ub.ac.id
Editorial Address
-
Location
Kota malang,
Jawa timur
INDONESIA
Journal of Degraded and Mining Lands Management
Published by Universitas Brawijaya
ISSN : 2339076X     EISSN : 25022458     DOI : -
Journal of Degraded and Mining Lands Management is managed by the International Research Centre for the Management of Degraded and Mining Lands (IRC-MEDMIND), research collaboration between Brawijaya University, Mataram University, Massey University, and Institute of Geochemistry, Chinese Academy of Sciences-China Papers dealing with result of original research, and critical reviews on aspects directed to the management of degraded and mining lands covering topography of a landscape, soil and water quality, biogeochemistry, ecosystem structure and function, and environmental, economic, social and health impacts are welcome with no page charge
Arjuna Subject : -
Articles 21 Documents
Search results for , issue "Vol 9, No 1 (2021)" : 21 Documents clear
Spatial distribution of soil morphology and physicochemical properties to assess land degradation under different NDVI and TRI in North Halmahera, Indonesia Rofita Rofita; Sri Nuryani Hidayah Utami; Azwar Maas; Makruf Nurudin
Journal of Degraded and Mining Lands Management Vol 9, No 1 (2021)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2021.091.3137

Abstract

Land degradation is currently a major environmental problem that can lead to decreasing biomass productivity. The causes of land degradation have been widely reported. However, the soil morphological characteristics and its detailed properties related to land degradation need to be investigated further. The research was conducted in North Halmahera Regency in March-April 2020. The study started with an overlay of basic maps such as rainfall, land use, topography, and soil types to map the degraded land units. Several land units classified from slightly damaged to severely damaged will be validated based on field observations and supported by laboratory measurements. Characterization of soil morphology and soil sampling was carried out according to USDA international standards. Sentinel 2A image and SRTM image from March to April 2020 were used to determine NDVI and TRI. The characteristics of the soils that have not been degraded tend to be found in volcanic landscapes, while those of the degraded soils tend to be found in structural and karst hills. The thickness of the degraded soil horizons tends to be shallower with an incomplete horizon arrangement, and many rock fragments are found in the soil surface layer. SOC gradually decreases in degraded soils, while the essential nutrients (N, P, and K) are relatively more varied across soil types. The improper land use without conservation on steep slopes causes the soils to be easily degraded. The soil degradation index has a linear relationship with NDVI and TRI. Thus, the revitalization of degraded lands needs to pay attention to the layout and types of vegetation with different slope levels according to the geomorphological zone.
Urban induced land use land cover changes in upper Deme watershed, Southwest Ethiopia Kambo Dero; Wakshum Shiferaw; Biruk Zewde
Journal of Degraded and Mining Lands Management Vol 9, No 1 (2021)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2021.091.3045

Abstract

The study was aimed to assess urban induced land use land cover changes in the upper Deme watershed. Three satellite images of 1986, 2002, and 2019 were analyzed by ArcGIS and processed by supervised classification. Land use land cover change in the watershed increased for settlement, bare land, and croplands in the period 1986-2019 by 56.6%, 53%, and 0.25%, respectively. However, the land use land cover change in the watershed decreased for a water body, forest, and grassland by 65%, 57.7%, and 7%, respectively. These enforced to change the work habit and social bases. Out of converted lands, during 1986-2002, 34.9%, 53%, 18%, 40.9%, and 10.6% of bare land, cropland, forest land, grassland, and water bodies, respectively, in the upper Deme watershed were changed into settlement areas. During 2002-2019, 30.7%, 36.8%, 26.9%, 66%, and 33.3% of bare land, cropland, forest land, grassland, and water bodies, respectively, were changed into settlement areas. This shows urbanization results in a different change in economic, social, land use land cover, and watershed management activities in the upper Deme watershed. 
Large scale mining in Ghana: a review of the implications on the host communities Mustapha Okyere; Jonathan Zinzi Ayitey; Benjamin Avurinyinbiik Ajabuin
Journal of Degraded and Mining Lands Management Vol 9, No 1 (2021)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2021.091.3193

Abstract

Following the implementation of the Structural Adjustment Program (SAP) in 1983, Ghana’s mining sector has experienced significant growth, making Ghana one of the 10-leading producers of gold globally and the largest in Africa since 2018. To this end, the mining industry has been contributing significantly to the country’s total export earnings and the overall Gross Domestic Product (GDP). Despite its contribution to the economy, mining in Ghana has been a subject of debate in the past few years due to its diverse impacts on the host communities. This study therefore conducted a review of the implications of large-scale mining in Ghana. Findings revealed that, mining activities gravely affect the quality of water in most mining communities due to the use of toxic substances such as mercury. Mining activities also destroy forest reserves and farmlands, cause respiratory diseases and death. The study therefore suggests an effective collaboration between all relevant stakeholders in monitoring mining activities to help mitigate the impacts on the host communities.
Treatment of compost as a source of organic material for bacterial consortium in the removal of sulfate and heavy metal lead (Pb) from acid mine drainage Fahruddin Fahruddin; Nursiah La Nafie; Asadi Abdullah; Mustika Tuwo; Awaluddin Awaluddin
Journal of Degraded and Mining Lands Management Vol 9, No 1 (2021)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2021.091.3083

Abstract

Acid mine drainage can pollute the environment because it is acidic and contains toxic heavy metals. The purpose of this research was the application of a bacterial consortium to remove sulfate and reduce heavy metal lead (Pb) in acid mine drainage. The application was done in the bioreactor for acid mine drainage treatment that was treated with compost. Observations were made every five days and included observation of total bacterial growth using the Standard Plate Count (SPC) method, determination of sulfate content by gravimetry, determination of pH by use of pH meter, and determination of the concentration of heavy metal Pb using the AAS method. As a result, it was obtained that the treatment of non-sterile compost in acid mine drainage was able to reduce the initial heavy metal concentration of Pb of 84% and reduce the sulfate content by 72%, along with increasing pH and an increase in total bacterial growth. Meanwhile, sterile compost treatment was only able to reduce the Pb content by 63% and sulfate by 54%. This result indicates that the addition of compost is more effective than the treatment of sterile compost.
Robusta coffee transpiration rate in smallholder coffee plantations on Inceptisols of Malang, East Java Jiyanti Yana Saputri; Sugeng Prijono; Budi Prasetya
Journal of Degraded and Mining Lands Management Vol 9, No 1 (2021)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2021.091.3165

Abstract

Climate change and the erratic and uneven rainfall distribution are the causes of reduced water available in the soil for plant needs to the transpiration process. This study aimed to determine coffee transpiration rate on dry land with rain harvesting techniques during the dry season, transition season, and rainy season and the factors that influence it. This study used field observation and laboratory analysis with two treatments, i.e. a bench terrace as a control (P1) and an L-shaped silt pit (P2). The variables observed were soil moisture content, transpiration rate, soil water potential, leaf water potential, and microclimate, especially temperature and sunlight intensity. The results showed that the transpiration rate of coffee plants was significantly different in the two treatments. The highest transpiration rate was found in P2 as much as 13.17 mm week-1 or equivalent to 1.88 mm day-1 during the dry season. Application of the L-shaped silt pit (P2) increased soil moisture content compared to the control (P1). This increase was followed by an increase in soil water potential and leaf water potential, which could reach the highest values of 0.18 bar and 0.49 bar, respectively. The transpiration decreases with the change of seasons from the dry season to the transitional season and the rainy season. This decrease is caused by changes in the microclimate, especially the temperature and sunlight intensity. Both are the most variables that affect the rate of transpiration.
Pilot-scale study based on integrated fixed-film activated sludge process for cement industrial wastewater treatment Mohamed Nabil Ali; Hanan A. Fouad; Mohamed M. Meky; Rehab M. Elhefny
Journal of Degraded and Mining Lands Management Vol 9, No 1 (2021)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2021.091.3073

Abstract

Due to the lack of freshwater resources in Egypt, cement wastewater treatment was performed to widen the range of the water used in irrigation to face the massive future water scarcity. In this study, integrated fixed-film activated sludge (IFAS) was used as a biological treatment method. A laboratory pilot was established as a simulation of the IFAS process. The scale-pilot consists of a primary sedimentation tank, an IFAS tank equipped with an air blower, and a final settling tank. Three experimental attempts were performed using 3 different bio-carriers. In the first trial, Luffa sponges were used as natural bio-carriers and polyurethane sponges (PU) as artificial bio-carriers in the second trial, in addition to a combination between Luffa and PU sponges as a hybrid bio-carrier in the third trial. After analyzing the physicochemical properties of wastewater at the national research center in Cairo, the removal efficiency of TSS (total suspended solids), COD (chemical oxygen demand) , BOD(biological oxygen demand), TN (total nitrogen), and TP (total phosphorous) was 94.5%, 87.8%, 90.8%, 75.9%, and 69.4%, respectively in case of using the combination between Luffa and PU sponges. It can be concluded that using IFAS process was effective for cement wastewater treatment and the effluent wastewater met the Egyptian code limitations for reuse in agriculture purposes.
The possibility of reclamation criteria success in Indonesia: soil condition, vegetation structure and species composition Tedi Yunanto; Farisatul Amanah; Nabila Putri Wisnu
Journal of Degraded and Mining Lands Management Vol 9, No 1 (2021)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2021.091.3201

Abstract

There are two regulations for mine reclamation success in the forestry area in Indonesia, namely Minister of Forestry Regulation No. P.60/Menhut-II/2009 and Minister of Energy and Mineral Resources Decree No. 1827.K/30/MEM/2018. Both regulations rule vegetation and soil success. This study aims to analyse criteria parameters from both regulations in the mine reclamation and compare them to the surrounding secondary natural forest (SNF). This study was conducted in 6 six types of mine reclamation stand structures: 1, 4, 6, 9, 11-year-old plantation and SNF using 1 hectare of the circular plot each (total 6 ha). Soil samples were collected from 40 cm depth to analyse physical, biological and chemical conditions. Mine reclamation areas had almost similar physical, biological and chemical soil conditions with SNF. Nevertheless, due to the potential acid-forming (PAF) material from overburden, the 1-year-old plantation had pH = 3.23-3.27. The highest diversity index and the number of species and families in all reclamation areas were H’ = 1.82 (11-year-old); 14 species (9-year-old); and 11 families (9-year-old), comparing with SNF were H’ = 3.48; 67 species, and 31 families. Conversely, vegetation structure parameters in mine reclamation areas were higher than SNF (diameter at height breast (DBH; 1.3 m) = 28.42 cm; tree density = 469/ha; basal area = 35.04 m2/ha; and total height = 16.85 m). Compared to the SNF, vegetation structure and soil conditions are mostly possible for mine reclamation success. Still, species composition needs to be considered further as a standard interval to meet the criteria.
The impact of mangrove damage on tidal flooding in the subdistrict of Tugu, Semarang, Central Java Westi Utami; Yuli Ardianto Wibowo; Ahmad Haris Hadi; Fajar Buyung Permadi
Journal of Degraded and Mining Lands Management Vol 9, No 1 (2021)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2021.091.3093

Abstract

Expansion of industrial areas, aquaculture, settlements, and limited knowledge of the community about the function of mangroves allegedly led to the conversion of mangrove functions in the early 1990s. This study aimed to map the condition of mangroves from 1988, 1990, 1995, 2008, to 2021 and their effect on the widespread of tidal flooding in three villages (Mangkang Kulon, Mangunharjo, Mangkang Wetan) in Tugu subdistrict, Semarang City. The research method was carried out by using spatiotemporal analysis of Landsat 5 and Landsat 8 imagery through the supervised approach (Maximum Likelihood algorithm). In order to map the correlation of mangrove damage with the widespread impact of tidal flooding, an overlay analysis of land use maps was carried out in 1988, 1990, 1995, 2008 and 2021. The results of the study showed that mangrove damage is correlated with the widespread of tidal flooding that drowns settlements, ponds, and agricultural land. Data analysis showed that the mangrove area in three villages has decreased from 1988 to 2021, covering an area of 242.66 ha. This condition is one of the triggers for the increase in tidal flooding area from 1988 to 2021, covering an area of 253.135 ha. As a natural barrier to prevent abrasion and tidal flooding, mangrove conservation is very necessary, considering the impact of tidal flooding on the coast of Semarang City is increasingly widespread.
Effects of land use on soil degradation in Giriwoyo, Wonogiri, Indonesia Mujiyo Mujiyo; Tiara Hardian; Hery Widijanto; Aktavia Herawati
Journal of Degraded and Mining Lands Management Vol 9, No 1 (2021)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2021.091.3063

Abstract

This study aimed at determining the effect of land use on soil degradation, discovering the indicator as a determinant factor of soil degradation, and providing recommendations for land management to improve soil productivity. This study was conducted in agricultural lands in Giriwoyo, Wonogiri, Indonesia, and the observation indicator adopted by the Indonesian Government Regulation concerning Soil Degradation Control for Biomass Production. The methodology used was survey research with purposive sampling points in 12 land mapping units, and each unit was represented three times. The result showed that the study area was slightly and moderately degraded. Land use significantly affected soil degradation, and the paddy field has the highest degradation in the study area. Soil characteristics as degradation factors in the study area were soil texture, bulk density, and total porosity. Strategy for land management can be made by limiting the use of chemical fertilizers, and changing the use of chemical fertilizers into compost, to increase soil organic content, and accelerate the availability of nutrients.
Soil macroporosity, physical properties and nutrient leaching after forest conversion to rubber and oil palm plantation in an Acrisol of Jambi, Indonesia Sri Rahayu Utami; Syahrul Kurniawan; Christanti Agustina; Marife De Corre
Journal of Degraded and Mining Lands Management Vol 9, No 1 (2021)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2021.091.3155

Abstract

Soil degradation is expected to continue as forest conversion into other land uses increases significantly. In Indonesia, Jambi is one of the main areas for the development of oil palm and rubber, whichare mainly converted from the forest. As a base for better management, we attempted to study macro-porosity in rubber and oil palm plantation, in comparison to secondary forests.  Four landuse systems (secondary forest, jungle rubber, rubber plantation and oil palm plantations) in Bukit Duabelas, Sarolangun District, Jambi Province, Sumatera, were selected for this study. The number of macropores in vertical or horizontal planes and their related factors (root mass, litter thickness, % organic C, bulk density, water content at pF 0 and pF 2.54, aggregate stability) were measured within the soil profiles. Forest conversion to jungle rubber, rubber and oil palm plantation led to a decrease of macro-porosity in the soil profile, especially in the upper 50 cm. Macropores, both at vertical and horizontal planes in the secondary forest was significantly higher than other landuses. Horizontal macropores in jungle rubber were higher than rubber and oil palm plantation, but not the vertical macropores. Among the soil properties measured, litter thickness, coarse root dry mass (Ø >2 mm), mesopores and aggregate stability were closely associated with soil macro-porosity. However, macro-porosity in the soil profile was insignificantly correlated to soil bulk density and % organic C. Increasing the number of horizontal macropores resulted in higher nutrient leaching, especially K and Na.

Page 1 of 3 | Total Record : 21