cover
Contact Name
Agung Setia Budi
Contact Email
agungsetiabudi@ub.ac.id
Phone
+62341-577911
Journal Mail Official
jtiik@ub.ac.id
Editorial Address
Fakultas Ilmu Komputer Universitas Brawijaya Gedung F FILKOM Lt. 8, Ruang BPJ Jalan Veteran No. 8 Malang Indonesia - 65145
Location
Kota malang,
Jawa timur
INDONESIA
Jurnal Teknologi Informasi dan Ilmu Komputer
Published by Universitas Brawijaya
ISSN : 23557699     EISSN : 25286579     DOI : http://dx.doi.org/10.25126/jtiik
Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) merupakan jurnal nasional yang diterbitkan oleh Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya (UB), Malang sejak tahun 2014. JTIIK memuat artikel hasil-hasil penelitian di bidang Teknologi Informasi dan Ilmu Komputer. JTIIK berkomitmen untuk menjadi jurnal nasional terbaik dengan mempublikasikan artikel berbahasa Indonesia yang berkualitas dan menjadi rujukan utama para peneliti. JTIIK di akreditasi oleh Kementerian Riset, Teknologi, dan Pendidikan Tinggi Republik Indonesia Nomor: 36/E/KPT/2019 yang berlaku sampai dengan Volume 11 Nomor 2 Tahun 2024.
Articles 26 Documents
Search results for , issue "Vol 7 No 2: April 2020" : 26 Documents clear
Deteksi Objek menggunakan Dashboard Camera untuk Sistem Peringatan Pencegah Kecelakaan pada Mobil Sutjiadi, Raymond; Pattiasina, Timothy John
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 7 No 2: April 2020
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2020712520

Abstract

Saat ini penggunaan dashboard camera marak digunakan pada mobil untuk merekam kondisi sekitar kendaraan ketika berkendara. Dashboard camera adalah semacam kamera yang ditempatkan pada bagian dashboard mobil dengan kamera menyorot ke arah depan kendaraan yang berfungsi untuk merekam kondisi jalan. Di lain pihak, pada mobil premium saat ini sudah disematkan beberapa teknologi canggih untuk mencegah terjadinya kecelakaan atau tabrakan yang biasa disebut dengan Forward Collision Warning System. Teknologi ini pada dasarnya berfungsi untuk mencegah terjadinya tabrakan dari arah depan, baik dengan cara aktif ataupun pasif. Pada penelitian ini akan dibuat sebuah sistem terintegrasi dimana dashboard camera, yang diimplementasikan menggunakan kamera smartphone berbasis Android, tidak hanya digunakan untuk perekaman secara statis, tetapi juga digunakan untuk membuat sistem pencegah kecelakaan secara pasif. Adapun aplikasi ini dibuat dengan menggunakan metode pengolahan citra digital untuk mendeteksi keberadaan objek di depan mobil dengan menggunakan Tensorflow Open Source Machine Learning Library. Dari hasil pengujian tampak bahwa aplikasi ini mampu mendeteksi objek kendaraan berupa mobil penumpang, bus, dan truk, serta dapat memberikan peringatan baik secara visual maupun alarm apabila kendaraan di depan sudah berada pada jarak yang cukup dekat untuk memperingatkan pengemudi akan bahaya tabrakan. AbstractNowadays dashboard camera becomes familiar to be used in a car to record the condition around the vehicle while driving. Dashboard camera is a video camera placed in car’s dashboard faces in front of the vehicle to record the road condition. In the other side, premium cars now equipped with advanced technology to prevent collision called Forward Collision Warning System. This technology basically acts to prevent front collision, either in active or passive ways. In this research was built integrated system where dashboard camera, which implemented by camera of Android based smartphone, not only used as static recording, but also as passive collision avoidance system. This application was developed using Object Detection Method in Tensorflow Open Source Machine Learning Library. The research stage was started from problem analysis, literature study to search comparison from previous research, also software development and finalized with testing to measure system performance. From the testing result, this application was able to detect vehicle objects in form of passenger car, bus, and truck, also could provide both visual and alarm warning when there was a vehicle come closely from in front, to warn the driver about the danger of collision.
Model Sistem Pendukung Keputusan Kelompok untuk Penilaian Gangguan Depresii, Kecemasan dan Stress Berdasarkan DASS-42 Kusumadewi, Sri; Wahyuningsih, Hepi
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 7 No 2: April 2020
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2020721052

Abstract

Depresi, kecemasan dan stress merupakan tiga gangguan yang sering dijumpai di masyarakat. Ketiga gangguan tersebut memiliki gejala yang hampir mirip. Depression, Anxiety and Stress Scales (DASS) merupakan salah satu alat ukur yang dapat digunakan untuk mengukur tingkat keparahan ketiga gangguan tersebut. DASS dengan jumlah item/gejala sebanyak 42 item dikenal dengan nama DASS-42. Alat ukut ini membedakan dengan jelas item/gejala dari setiap gangguan. Setiap gangguan memiliki item yang mempengaruhi sebanyak 14 item. Pada penelitian ini dibangun model Sistem Pendukung Keputusan Kelompok (SPKK) yang memungkinkan para psikolog untuk berkolaborasi memberikan preferensi terkait prioritas gangguan yang akan terjadi apabila diketahui item/gejala tertentu menurut DASS-42. Preferensi diberikan dengan format ordered vectors. Untuk memudahkan proses agregasi/komposisi, selanjutnya dilakukan transformasi preferensi ke relasi preferensi fuzzy. Operator Ordered Weighted Averaging (OWA) digunakan untuk melakukan agregasi peferensi menjadi satu matriks. Proses seleksi alternatif terbaik dilakukan dengan menggunakan Quantifier Guided Dominance Degree (QGDD). Hasil pengujian menunjukkan bahwa ketepatan hasil SPKK terhadap DASS-42 adalah sebesar 71,43% (30 dari 42 item/gejala). Item/gejala yang beririsan secara signifikan antara gangguan kecemasan dan stress sebesar 16,67%. (7 dari 42), antara depresi dan kecemasan sebesar 9,52% (4 dari 42). Secara umum SPKK ini mampu mengakomodasi preferensi para pengambil keputusan dalam memberikan bobot pengaruh. Gangguan kecemasan dan gangguan stress memiliki gejala yang sangat mirip sehingga untuk beberapa item.gejala pada DASS-42 ada perbedaan yang cukup signifikan. AbstractDepression, anxiety and stress are three disorders that are often found in the community. These three disorders have almost identical symptoms. Depression, Anxiety and Stress Scales (DASS) is an psychological instrument that can be used to measure the severity of these disorders. DASS with a total of 42 items known as DASS-42. This instrument distinguishes clearly the symptoms of each disorder. Each disorder has 14 items affect. The three disorders have a number of symptoms that are similar, even a symptom may affect two or three disorders with different levels of influence. In this study, a Group Decision Support System (GDSS) model was developed so that psychologists can collaborate to give preference regarding priority of disorders that would occur if certain items / symptoms were identified by  DASS-42. Preferences are given in ordered vectors format. The preferences given by each decision maker aggregated to get a single preference. These preferences will be transformed to the fuzzy preference relation format. Ordered Weighted Averaging (OWA) operator used to aggregation process for all decision maker preference. The OWA operator are used to aggregate into one matrix. The best alternative selected by using Quantifier Guided Dominance Degree (QGDD). The test results show that the accuracy of the GDSS results on DASS-42 is 71.43% (30 of 42 items / symptoms). Symptoms that overlap significantly between anxiety and stress disorders are 16.67%. (7 of 42), between depression and anxiety by 9.52% (4 of 42). The GDSS is able to accommodate the preferences of decision makers in giving influence weight. Anxiety and stress disorder have very similar symptoms so that for some symptoms in the DASS-42 there are significant differences.
Routing Attacs pada Internet Of Things Berbasis Smart Intrution Detecion System Sofa, Eka Lailatus; Subiyanto, Subiyanto
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 7 No 2: April 2020
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2020721926

Abstract

Internet of Things (IoT) telah memasuki berbagai aspek kehidupan manusia, diantaranya smart city, smart home, smart street, dan smart industry yang memanfaatkan internet untuk memantau informasi yang dibutuhkan. Meskipun sudah dienkripsi dan diautentikasi, protokol jaringan IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN) yang dapat menghubungkan benda-benda yang terbatas sumber daya di IoT masih belum dapat diandalkan. Hal ini dikarenakan benda-benda tersebut masih dapat terpapar oleh routing attacks yang berasal dari jaringan 6LoWPAN dan internet. Makalah ini menyajikan kinerja Smart Intrusion Detection System berdasarkan Compression Header Analyzer untuk menganalisis model routing attacks lainnya pada jaringan IoT. IDS menggunakan compression header 6LoWPAN sebagai fitur untuk machine learning algorithm dalam mempelajari jenis routing attacks. Skenario simulasi dikembangkan untuk mendeteksi routing attacks berupa selective forwarding attack dan sinkhole attack. Pengujian dilakukan menggunakan feature selection dan machine learning algorithm. Feature selection digunakan untuk menentukan fitur signifikan yang dapat membedakan antara aktivitas normal dan abnormal. Sementara machine learning algorithm digunakan untuk mengklasifikasikan routing attacks pada jaringan IoT. Ada tujuh machine learning algorithm yang digunakan dalam klasifikasi antara lain Random Forest, Random Tree, J48, Bayes Net, JRip, SMO, dan Naive Bayes. Hasil percobaan disajikan untuk menunjukkan kinerja Smart Intrusion Detection System berdasarkan Compression Header Analyzer dalam menganalisis routing attacks. Hasil evaluasi menunjukkan bahwa IDS ini dapat mendeteksi antara serangan dan non-serangan. AbstractInternet of Things (IoT) has entered various aspects of human life including smart city, smart home, smart street, and smart industries that use the internet to get the information they need. Even though it's encrypted and authenticated, Internet protocol  IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN) networks that can connect limited resources to IoT are still unreliable. This is because these objects can still be exposed to attacks from 6LoWPAN and the internet. This paper presents the performance of an Smart Intrusion Detection System based on Compression Header Analyzer to analyze other routing attack models on IoT networks. IDS uses a 6LoWPAN compression header as a feature for machine learning algorithms in learning the types of routing attacks. Simulation scenario was developed to detect routing attacks in the form of selective forwarding and sinkhole. Testing is done using the feature selection and machine learning algorithm. Feature selection is used to determine significant features that can distinguish between normal and abnormal activities. While machine learning algorithm is used to classify attacks on IoT networks. There were seven machine learning algorithms used in the classification including Random Forests, Random Trees, J48, Bayes Net, JRip, SMO, and Naive Bayes. Experiment Results to show the results of the Smart Intrusion Detection System based on Compression Header Analyzer in analyzing routing attacks. The evaluation results show that this IDS can protect between attacks and non-attacks.
Sistem Informasi Manajemen Proyek Berbasis Kanban (Studi Kasus: PT. XYZ) Vidianto, Agung Sirajuddin; Haji, Wachyu Hari
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 7 No 2: April 2020
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2020701676

Abstract

Penelitian ini mengkaji mengenai permasalahan yang terjadi ketika sebuah perusahaan mengerjakan sebuah proyek.  Banyak perusahaan menghadapi kesulitan dalam mengelola proyek, menyediakan informasi, dan memberikan hasil proyek yang berkualitas, hal tersebut sering kali terjadi bukan karena kurangnya sumber daya maupun kurang handal-nya SDM yang digunakan, namun lebih kepada sulitnya menentukan, merencanakan, dan melacak perkembangan proyek tersebut. PT. XYZ merupakan sebuah perusahaan manufaktur peralatan rumah tangga dengan desain gambar tokoh kartun atau tokoh superhero berlisensi. Hal ini membuat PT. XYZ untuk mendesain bentuk produk dan bagaimana desain gambar decal atau stiker pada produk mengikuti tren di masyarakat sebelum tren tersebut berubah, sehingga setiap proyek desain yang harus diselesaikan sesegera mungkin. PT. XYZ juga memiliki bagian TI dimana setiap kegiatan pada bagian TI akan menyangkut banyak pihak dan memiliki deadline yang ketat, baik ketika melakukan peningkatan kinerja, perbaikan sistem, maupun pembaharuan sistem. Sehingga diperlukannya sebuah sistem manajemen proyek untuk mempermudah pengelolaan kegiatan proyek yang ada di PT. XYZ. Dengan menggunakan teknologi informasi, maka dibuatlah sebuah sistem manajemen proyek berbasis kanban, yang berfungsi memonitor perkembangan dan tingkat penyelesaian proyek, mengalokasikan sumber daya dan tugas, serta menyediakan laporan dari proyek yang ada.
Deteksi Dini Kanker Kulit menggunakan K-NN dan Convolutional Neural Network Savera, Teresia R.; Suryawan, Winsya H.; Setiawan, Agung Wahyu
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 7 No 2: April 2020
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2020702602

Abstract

Kanker kulit adalah salah satu jenis kanker yang dapat menyebabkan kematian sehingga diperlukan sebuah aplikasi perangkat lunak yang dapat digunakan untuk membantu melakukan deteksi dini kanker kulit dengan mudah. Sehingga diharapkan deteksi dini kanker kulit dapat terdeteksi lebih cepat. Pada penelitian ini terdapat dua metode yang digunakan untuk melakukan deteksi dini kanker kulit yaitu deteksi dengan klasifikasi secara regresi dan artificial neural network dengan arsitektur convolutional neural network. Akurasi yang diperoleh dengan menggunakan klasifikasi secara regresi adalah sebesar 75%. Sementara, akurasi deteksi yang didapatkan dengan menggunakan convolutional neural network adalah sebesar 76%. Hasil yang diperoleh dari kedua metoda ini masih dapat ditingkatkan pada penelitian lanjutan, yaitu dengan cara melakukan prapengolahan pada set data citra yang digunakan. Sehingga set data yang digunakan memiliki tingkat pencahayaan, sudut (pengambilan), serta ukuran citra yang sama. Apabila tersedia sumber daya komputasi yang besar, akan dilakukan penambahan jumlah citra yang digunakan, baik itu sebagai set data latih maupun uji. AbstractSkin cancer is one type of cancer that can cause death for many people. Because of this, an application is needed to easily detect skin cancer early that the cancer can be handled with more quickly. In this study there were two methods used to detect skin cancer, namely detection by regression classification and detection by classifying using artificial neural networks with network convolutional architecture. Detection with regression classification gives an accuracy of 75%. While detection using convolutional neural networks gives an accuracy of 76%. These proposed early detection systems can be improved to increase the accuracy. For further development, several image processing techniques will be applied, such as contrast enhancement and color equalization. For future works, if there is more computational resource, more images can be used as dataset and implement the deep learning algorithm to improve the accuracy.
V- Model untuk Pengembangan Sistem Informasi Manajemen Ruang Rapat Herlambang, Admaja Dwi; Rachmadi, Aditya; Rahmatika, Azri Putri; Utami, Dinar Indah Dwi; Hapsari, Safira Widya
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 7 No 2: April 2020
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2020721893

Abstract

Pengelolaan peminjaman ruangan yang baik, dapat memberikan informasi yang dapat diakses secara real-time sehingga akan mempermudah pengguna untuk mengetahui informasi yang tersedia perihal ketersediaan ruangan.Pemindahan jadwal secara mendadak karena kesalahan informasi ruangan mengakibatkan terjadinya bentrok dengan jadwal lain. Kesalahan informasi menyebabkan agenda yang telah direncanakan sebelumnya tertunda. Solusi dari permasalahan peminjaman ruang pertemuan adalah penyebaran informasi secara real-time dan dapat diakses oleh tiap pengguna. Sistem berbasis web dibutuhkan untuk dapat memberikan informasi peminjaman secara real-time sehingga kesalahan informasi dapat diperkecil. Penelitian ini bertujuan untuk melakukan perencangan dan pembangunan sistem berbasis web untuk mengelola peminjaman ruangan. Model pembangunan aplikasi yang digunakan adalah V-Model dengan pendekatan terstruktur. V-Model meliputi aktivitas spesifikasi kebutuhan, architectural design, component design, implementasi kode hingga pengujian. Basis Path Testing menghasilkan dua puluh kasus uji yang seleuruhnya telah teruji dengan baik. Hasil uji dari Validation Testing menunjukan hasil yang valid yang telah dilakukan kepada tujuh fungsi yang dimiliki oleh sistem. AbstractAn organization needs good meeting room booking management that could be accessed in real-time. Convenient access for meeting room information will make searching activities for the meeting room availability in an organization easier. The sudden change in schedule due to misinformation resulted in a conflict with another schedule. Incorrect information can make a previously planned agenda to be delayed. The solution of meeting room booking management problems is to provide all departments in the organization with real-time information about the room that had been booked. Using the website as a means for disseminating room information can make incorrect information to be eliminated. This study aims to design and build a room booking management website to help the organization manage its room information. V-Model development used as a model to build the meeting room booking management website. In this study, V-Model is used with structural system design method. The V-Model included the requirements specification, architectural design, component design, code implementation to testing. The Basis Path Testing provided twenty test cases which had been thoroughly tested. Test results from Validation Testing showed valid results that have been tested on the seven functions owned by the system.

Page 3 of 3 | Total Record : 26


Filter by Year

2020 2020


Filter By Issues
All Issue Vol 12 No 6: Desember 2025 Vol 12 No 5: Oktober 2025 Vol 12 No 4: Agustus 2025 Vol 12 No 3: Juni 2025 Vol 12 No 2: April 2025 Vol 12 No 1: Februari 2025 Vol 11 No 6: Desember 2024 Vol 11 No 5: Oktober 2024 Vol 11 No 4: Agustus 2024 Vol 11 No 3: Juni 2024 Vol 11 No 2: April 2024 Vol 11 No 1: Februari 2024 Vol 10 No 6: Desember 2023 Vol 10 No 5: Oktober 2023 Vol 10 No 4: Agustus 2023 Vol 10 No 3: Juni 2023 Vol 10 No 2: April 2023 Vol 10 No 1: Februari 2023 Vol 9 No 7: Spesial Issue Seminar Nasional Teknologi dan Rekayasa Informasi (SENTRIN) 2022 Vol 9 No 6: Desember 2022 Vol 9 No 5: Oktober 2022 Vol 9 No 4: Agustus 2022 Vol 9 No 3: Juni 2022 Vol 9 No 2: April 2022 Vol 9 No 1: Februari 2022 Vol 8 No 6: Desember 2021 Vol 8 No 5: Oktober 2021 Vol 8 No 4: Agustus 2021 Vol 8 No 3: Juni 2021 Vol 8 No 2: April 2021 Vol 8 No 1: Februari 2021 Vol 7 No 6: Desember 2020 Vol 7 No 5: Oktober 2020 Vol 7 No 4: Agustus 2020 Vol 7 No 3: Juni 2020 Vol 7 No 2: April 2020 Vol 7 No 1: Februari 2020 Vol 6 No 6: Desember 2019 Vol 6 No 5: Oktober 2019 Vol 6 No 4: Agustus 2019 Vol 6 No 3: Juni 2019 Vol 6 No 2: April 2019 Vol 6 No 1: Februari 2019 Vol 5 No 6: Desember 2018 Vol 5 No 5: Oktober 2018 Vol 5 No 4: Agustus 2018 Vol 5 No 3: Juni 2018 Vol 5 No 2: April 2018 Vol 5 No 1: Februari 2018 Vol 4 No 4: Desember 2017 Vol 4 No 3: September 2017 Vol 4 No 2: Juni 2017 Vol 4 No 1: Maret 2017 Vol 3 No 4: Desember 2016 Vol 3 No 3: September 2016 Vol 3 No 2: Juni 2016 Vol 3 No 1: Maret 2016 Vol 2, No 2 (2015) Vol 2 No 2: Oktober 2015 Vol 2, No 1 (2015) Vol 2 No 1: April 2015 Vol 1, No 2 (2014) Vol 1 No 2: Oktober 2014 Vol 1, No 1 (2014) Vol 1 No 1: April 2014 More Issue