cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Indonesian Journal of Biotechnology
ISSN : 08538654     EISSN : 20892241     DOI : -
Core Subject : Science,
The Indonesian Journal of Biotechnology (IJBiotech) is an open access, peer-reviewed, multidisciplinary journal dedicated to the publication of novel research in all aspects of biotechnology, with particular attention paid to the exploration and development of natural products derived from tropical—and especially Indonesian—biodiversity. IJBiotech is published biannually and accepts original research articles featuring well-designed studies with clearly analyzed and logically interpreted results. A strong preference is given to research that has the potential to make significant contributions to both the field of biotechnology and society in general.
Arjuna Subject : -
Articles 6 Documents
Search results for , issue "Vol 26, No 2 (2021)" : 6 Documents clear
Identification of gene expression location of angiotensin‐converting enzyme‐2 SNPs as a receptor for SARS‐CoV‐2 in different populations by using various databases Dyah Aryani Perwitasari; Rita Maliza; Bayu Tri Murti; Haafizah Dania; Athika Darumas Putri
Indonesian Journal of Biotechnology Vol 26, No 2 (2021)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijbiotech.63260

Abstract

The World Health Organization (WHO) has announced that Severe Acute Respiratory Syndrome Coronavirus‐2 (SARS‐CoV‐2) and Coronavirus disease (COVID‐19) is considered a worldwide pandemic. Rapidly rising numbers of patients have been reported in almost every country, along with the growing mortality rates. Uncontrolled growth in patient numbers may be due to reasons such as treatment options and vaccine availabilities and unidentified targets of SARS‐CoV‐2. Previous study has revealed that the molecular target of SARS‐CoV‐2 is analogous to SARS (2003), i.e. angiotensin‐converting enzyme‐2 (ACE‐2). Therefore, the determination of ACE‐2 may enrich existing information and facilitate development of drugs targeted toward SARS‐CoV‐2. This study aims to screen the expression of ACE‐2 genes and their relationship to the types of SNP variants in SARS‐CoV‐2. We explored a series of observations using powerful databases, e.g. GTEx portal, HaploReg, 1000 Genome and Ensembl, to identify the gene variant of ACE‐2. We showed that ACE‐2 is highly expressed in the testes and small intestine, while its lowest level is observed in lymphocytes. Subsequently, we observed 17 gene variants containing a missense mutation potentially damaging protein level. Among these genes, single nucleotide polymorphism (SNP) rs370187012 shows the highest damage‐level score, while the lowest effect is in SNP rs4646116. The highest frequency of the C allele was observed in European populations (1%). In addition to showing that ACE‐2 is expressed in several organs, we concluded that the ACE‐2 gene variation can be found in African, American, Southeast and East Asian, and European populations. The polymorphisms of ACE‐2 impact on the ACE2 protein structure and the binding capacity of the ACE‐2 receptor with the S‐Protein of SARS‐CoV‐2.
The potential of mesenchymal stem‐cell secretome for regeneration of intervertebral disc: A review article Romaniyanto Romaniyanto; Cita Rosita Sigit Prakoeswa; Damayanti Tinduh; Hari Basuki Notobroto; Fedik Abdul Rantam; Dwikora Novembri Utomo; Heri Suroto; Ferdiansyah Ferdiansyah
Indonesian Journal of Biotechnology Vol 26, No 2 (2021)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijbiotech.63318

Abstract

Low back pain is a crucial public health problem that is commonly associated with intervertebral disc de‐ generation and has vast socio‐economic impact worldwide. Current treatments for disc degeneration are conservative, non‐surgical, or surgical interventions, and there is no current clinical therapy aimed at directly reversing the degeneration. Given the limited capacity of intervertebral disc (IVD) cells to self‐repair, treatment aiming to regenerate IVDs is a topic of interest and mesenchymal stem cells (MSCs) have been identified as having potential in this regeneration. Recent studies have revealed that the benefits of MSC therapy could result from the molecules the cells secrete and that play principal roles in regulating essential biologic processes, rather than from the implanted cells themselves. Therefore, the objective of this study is to review the potential use of the MSC secretome to regenerate IVDs. Current evidence shows that the secretome may regenerate IVDs by modulating the gene expressions of nucleus pulposus cells (upregulation of keratin 19 and downregulation of matrix metalloproteinase 12 and matrix Gla protein) and stimulating IVD progenitor cells to repair the degenerated disc.
Genetic diversity of local rice varieties (Oryza sativa L.) in Vietnam’s Mekong Delta based on SSR markers and morphological characteristics Tran Huu Phuc; Van Quoc Giang; Nguyen Van Manh; Huynh Ky
Indonesian Journal of Biotechnology Vol 26, No 2 (2021)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijbiotech.63648

Abstract

Based on target traits, use of the genetic diversity of rice is beneficial for crop improvement. In this study, 41 rice varieties local to Vietnam’s Mekong Delta were evaluated on the basis of 11 quantitative morphological traits, along with the assessment of genetic diversity according to 50 SSR markers. The actual yield had a significance level of 0.05, while plant height and panicles per square meter had a high significance level of 0.001. Cluster analysis based on 11 quantitative traits also revealed that two were the optimal number of clusters used in this study. The highest polymorphic information content (PIC) value obtained was for RM286 (0.49), with a range of 0.00 to 0.49 and an average PIC of 0.14. Both structure and phylogenetic tree analyses as inferred from 50 SSR markers by the unweighted pair‐group method with arithmetic mean (UPGMA) also indicated that the 41 local rice varieties could be divided into two major groups. This study provides a useful information for Mot bui do cao CM, and Mot bui five varieties for improvements in the yield and intermediate amylose content of local rice‐breeding programs in future, especially for the Mekong Delta region.
Spatial learning and memory of young and aging rats following injection with human Wharton’s jelly‐mesenchymal stem cells Berry Juliandi; Wildan Mubarok; Dian Anggraini; Arief Boediono; Mawar Subangkit; Indra Bachtiar; Harry Murti; Kelvin Yaprianto; Boenjamin Setiawan
Indonesian Journal of Biotechnology Vol 26, No 2 (2021)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijbiotech.64734

Abstract

Human Wharton’s jelly‐mesenchymal stem cells (hWJ‐MSC) are an emerging potential source of stem cells derived from the umbilical cord. Previous studies have shown their potential as treatment for traumatic brain injury and Parkinson’s disease. However, no study has yet investigated the effect of hWJ‐MSC injections in countering spatial learning and memory impairment in aging rats. The effect of hWJ‐MSC injection on young rats is also unknown. The objective of this research was to analyze the effect of an hWJ‐MSC injection on spatial learning, memory, density of putative neural progenitor cells (pNPC), and neuronal apoptosis in the dentate gyrus (DG) of young and aging rats. Injection of hWJ‐MSC did not change spatial learning and memory in young rats until two months post‐injection. This might be due to retained pNPC density and neuronal apoptosis in the DG of young rats after injection of hWJ‐MSC. In contrast, injection of hWJ‐MSC promoted both spatial learning and memory in aging rats, a finding that might be attributable to the increased pNPC density and attenuated neuronal apoptosis in DG of aging rats during the two months post‐injection. Our study suggests that a single injection of hWJ‐MSC might be sufficient to promote improvement in long‐term learning and memory in aging rats.
A recombinant DNA‐satellite associated with Pepper yellow leaf curl Indonesia virus in highland area Argawi Kandito; Sedyo Hartono; Sri Sulandari; Susamto Somowiyarjo
Indonesian Journal of Biotechnology Vol 26, No 2 (2021)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijbiotech.64817

Abstract

Yellow curl disease caused by begomovirus is a major threat for horticulture in Indonesia. Control mea‐ sures for the disease face several constraints, one of which is the association between begomovirus and DNA satellites which can affect the severity of symptoms. In this study, we detected the presence of a DNA satellite associated with begomovirus in a highland area. The sample was obtained from Ketep, Magelang, located approximately 1400 meters above sea level. Begomovirus was detected using primers PAL1V1978/PAR1C715 that resulted in an amplicon of ap‐ proximately 1600bp. The presence of this satellite was detected using primers CLB36F/CLB37R, resulting in full‐length satellite genome of approximately 1300bp. Sequence analysis showed the sample was infected by Pepper yellow leaf curl Indonesia virus (PepYLCIV) and a non‐coding satellite which resembled some characteristics of common betasatellites with imperfect putative ORF βC1. SimPlot analysis revealed the recombination event between betasatellites and DNA‐B of PepYLCIV. The satellite found in this study is thought to be the result of recombination due to multiple infections in plants.
Distinguishing resistances of transgenic sugarcane generated from RNA interference and pathogen‐derived resistance approaches to combating sugarcane mosaic virus Weny Nailul Hidayati; Retnosari Apriasti; Hardian Susilo Addy; Bambang Sugiharto
Indonesian Journal of Biotechnology Vol 26, No 2 (2021)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijbiotech.65256

Abstract

Sugarcane mosaic virus (SCMV) is a causative agent that reduces growth and productivity in sugarcane. Pathogen‐derived resistance (PDR) and RNA interference (RNAi) are the most common approaches to generating resis‐ tance against plant viruses. Two types of transgenic sugarcane have been obtained by PDR and RNAi methods using a gene‐encoding coat protein (CP) of SCMV (SCMVCp). This research aimed to distinguish resistance of the two transgenic sugarcanes in combating SCMV through artificial viral inoculation. The experiment was conducted using transgenic sugar‐ cane lines validated by PCR analysis. Insertion of gene‐encoding CP in the transgenic lines was confirmed by amplification of 702 bp of DNA fragment of SCMVCp. After viral inoculation, mosaic symptoms appeared earlier, at 21 days post inoculation (dpi) in PDR transgenic lines, but was at 26 dpi in RNAi transgenic lines. Symptom observation showed that 77.8% and 50% of the inoculated plants developed mosaic symptoms in PDR and RNAi transgenic lines, respectively. RT‐PCR analysis revealed that the nuclear inclusion protein b (Nib) gene of SCMV was amplified in the symptomatic leaves in plants classified as susceptible lines. Immunoblot analysis confirmed presence of viral CP with a molecular size of 37 kDa in the susceptible lines. Collectively, these results indicated that the RNAi approach targeting the gene for CP effectively produces more resistance against the SCMV infection in transgenic sugarcane compared to the PDR approach.

Page 1 of 1 | Total Record : 6