cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
JAIS (Journal of Applied Intelligent System)
ISSN : 25020493     EISSN : 25029401     DOI : -
Core Subject :
Journal of Applied Intelligent System (JAIS) is published by LPPM Universitas Dian Nuswantoro Semarang in collaboration with CORIS and IndoCEISS, that focuses on research in Intelligent System. Topics of interest include, but are not limited to: Biometric, image processing, computer vision, knowledge discovery in database, information retrieval, computational intelligence, fuzzy logic, signal processing, speech recognition, speech synthesis, natural language processing, data mining, adaptive game AI.
Arjuna Subject : -
Articles 191 Documents
Cross-Language Text Document Plagiarism Detection System Using Winnowing Method Mustika Mentari; Imam Fahrur Rozi; Maria Puji Rahayu
Journal of Applied Intelligent System Vol 7, No 1 (2022): Journal of Applied Intelligent System
Publisher : Universitas Dian Nuswantoro and IndoCEISS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jais.v7i1.5950

Abstract

Currently, there are many text documents such as journals scattered on the internet, both Indonesian and English-language journals. With this, it is possible to act plagiarism by copying from foreign journals that are translated into other languages or copying directly without being changed from the original language. One way that can suppress these actions is to build a plagiarism detection system for cross-language text documents. The method that can be used to detect document plagiarism is the Winnowing method. Winnowing method is a method where text input will be processed to produce a hash value called a fingerprint. This study aims to build a system that can detect plagiarism of text documents in different languages using the Winnowing method. Text documents that can be tested are input text and PDF files. Documents used in system testing are journals that have the same topic. The results of the highest level of accuracy produced between the calculation of the Jaccard Coefficient with the Plagiarism Checker X application are in the fourth scenario with an average percentage value of 84.7%.
New Image Texture Feature for Chest X-Ray Classification Prajanto Wahyu Adi; Fajar Agung Nugroho; Yani Parti Astuti
Journal of Applied Intelligent System Vol 7, No 1 (2022): Journal of Applied Intelligent System
Publisher : Universitas Dian Nuswantoro and IndoCEISS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jais.v7i1.5340

Abstract

This study proposes a new feature extraction model to identify CXR images of covid-19 and pneumonia has a high visual resemblance. The feature extraction model starts by using histogram equalization and average filters as lowpass features and high pass features obtained through Laplacian and LoG filters. In the next step, covariance matrix of image along with the entire features are used to produce an eigen vector that will be used as a feature vector in the classification process. The final stage is the process of testing features on the classification algorithms KNN, SVM, LDA, Naïve Bayes, and Decision Tree through a 10-foldcross validation scheme with 0.9 training data and 0.1 test data. The first experiment for the Covid-19 and normal classes shows that the proposed model is able to produce an accuracy of 96% as the comparison model with GLCM texture extraction have an accuracy value of 91%. The second test is conducted for the class Covid-19 and pneumonia and obtained an accuracy value of 89% for the proposed model and 73% for the GLCM texture extraction. Experiments proved that the proposed model successfully outperformed the GLCM texture extraction model in all of classification algorithms used.
A Covid-19 Sentiment Analysis on Twitter Using K-Nearest Neighbours Castaka Agus Sugianto; Shandy Tresnawati
Journal of Applied Intelligent System Vol 7, No 1 (2022): Journal of Applied Intelligent System
Publisher : Universitas Dian Nuswantoro and IndoCEISS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jais.v7i1.5984

Abstract

In December 2019, an outbreak named Corona Virus (SARS-CoV-2) occurred in the city of Wuhan, China which was later known as COVID-19. News of the development of the virus spread through various media, one of which was through the well-known platform Twitter. Twitter is one of the widely used media platforms to communicate about Covid-19. Information related to Covid-19 circulating in the community can be in the form of news or opinions or opinions. Then, the circulating information will be classified into three classes, namely positive, negative or neutral. The method used to calculate the prediction of text classification on Twitter is K-nearest neighbors (KNN). The dataset used in grouping on twitter by using the account name Covid19. Firstly, the dataset by crawling data or information on twitter. Secondly, the text mining stage to determine the class distance value and calculate the Euclidean distance formula based on all the training data to be tested. After the training process is complete, the evaluation model used will be used, the Euclidean results are taken based on the value of the closest distance. The accuracy of the model will be calculated using the previous Euclidean method. The results of this study he obtained with the highest value, one of which was 78% using a 50:50 sample comparison with k-5 and k-9 values.
Classification of X-Ray Images of Normal, Pneumonia, and Covid-19 Lungs Using the Fuzzy C-Means (FCM) Algorithm Dini Rohmayani; Ayu Hendrati Rahayu
Journal of Applied Intelligent System Vol 7, No 1 (2022): Journal of Applied Intelligent System
Publisher : Universitas Dian Nuswantoro and IndoCEISS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jais.v7i1.5512

Abstract

Lung disease has a very serious impact on the respiratory system and can be dangerous if not treated immediately. At this time, lung diseases that are often encountered by the public include pneumonia and 2019 coronavirus. Many people mistake the disorder that occurs to him because the symptoms of Covid-19 and pneumonia are very similar. Thus, it is very important to know the difference between the two diseases so that early treatment can be carried out. Based on the problems that have been described, the author will propose a study entitled "Classification of X-ray Images of Normal Lungs, Pneumonia, and Covid-19 Using the Fuzzy C-Means (FCM) Algorithm". The aim of this study is to assist in classifying normal, pneumonia, and Covid-19 lungs. The reason for choosing this algorithm is that this algorithm has advantages in grouping cluster centers which are more optimal than other methods.
Indonesian Language Hoax News Classification Basedn on Naïve Bayes Ari Sudrajat; Ratna Rizky Wulandari; Elvathna Syafwan
Journal of Applied Intelligent System Vol 7, No 1 (2022): Journal of Applied Intelligent System
Publisher : Universitas Dian Nuswantoro and IndoCEISS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jais.v7i1.5985

Abstract

Hoax news in Indonesia causes various problems, therefore it is necessary to classify whether a news is in the hoax category or is valid. Naive Bayes is an algorithm that can perform classification but has a weakness, namely the selection of attributes that can affect accuracy so that it needs to be optimized by giving weights to attributes using the TF-IDF method. Classification using Naive Bayes and using TF-IDF as attribute weighting on a dataset of 600 data resulted in 82% accuracy, 84% precision, and 89% recall. The suggestion put forward is that it is better to use a larger number of datasets in order to produce higher accuracy.
Facial Skin Color Segmentation Using Otsu Thresholding Algorithm Aris Haris Rismayana; Henny Alfianti; Dadan Saepul Ramdan
Journal of Applied Intelligent System Vol 7, No 1 (2022): Journal of Applied Intelligent System
Publisher : Universitas Dian Nuswantoro and IndoCEISS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jais.v7i1.5513

Abstract

The development of technology and information is currently very fast. One of the fields of technology and information that is experiencing development is the field of digital image processing. There are many technologies today that utilize digital images such as facial recognition, object detection and many others. Skin is one of the largest components of the human body. Currently, technology in the identification of skin color is widely used in recognizing the human race. In this study, skin color detection uses the YCbCr color space, which in this study only uses the range of Cb and Cr values, and ignores the Y value. Where Y is the lighting in the image. So if not changed, the image will contain light effects that can change the characteristics of skin color. However, problems were found because the detected images were not segmented properly, such as clothes and hair from the tested images were still detected as skin. Therefore, the HCbCr color space method is proposed where the Hue value will represent the color of visible light. While the Otsu Thresholding method will separate the background from the object in the digital image.
A Good Relative Percentage Increase (RPI) of Variant Job Scheduling Using Artificial Bee Colony (ABC) Riri Damayanti Apnena; Firdhani Faujiyah
Journal of Applied Intelligent System Vol 7, No 1 (2022): Journal of Applied Intelligent System
Publisher : Universitas Dian Nuswantoro and IndoCEISS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jais.v7i1.5989

Abstract

Artificial Bee Colony (ABC) which is a development of the intelligent swarm model and is a branch of artificial intelligence based on self-organization systems. Artificial Bee Colony (ABC) is an intelligent algorithm that is inspired by the food search process carried out by bees. This is like what is done when there are many jobs that need to find the optimal value, where each job to be processed has a specific route of operations to be performed on a set of machines, and a different flow shop and variant: all jobs follow the same machine sequences. We will focus on the latter. In this study, ABC is implemented to optimize work scheduling, in this case 7 different variations are used with mxn values between 10x3 to 40x15 on 10 to 40 jobs. To evaluate the results, the Relative Percentage Increase (RPI) has been used in the test with an achievement range between 1.9 to 18.9.
Expert System for Diagnosing Potential Diabetes Attacks Using the Fuzzy Tsukamoto Christy Atika Sari; Wellia Shinta Sari; Andi Danang Krismawan
Journal of Applied Intelligent System Vol 7, No 2 (2022): Journal of Applied Intelligent System
Publisher : Universitas Dian Nuswantoro and IndoCEISS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jais.v7i2.6796

Abstract

Diabetes is one of the top three killers in Indonesia. According to the 2014 sample enrollment survey, the number of people with diabetes is increasing year by year. This is because the diagnosis of the disease is delayed. Also unhealthy lifestyle. In an era of fast and efficient technological advancement, this is a very good thing for advancement in various fields. More and more fields of knowledge are developing, one of which is expert systems. An expert system is a software or computer program that matches the ability of an expert, meaning that it can match humans with special abilities that ordinary people cannot solve. Expert systems aim to solve specific problems, such as in fields such as medicine, education, etc. This expert system takes as inputs several variables consisting of transient blood sugar (GDS), fasting blood sugar (GDP), frequent hunger, thirst, weight loss, and urine (BAK), the method used by the author is Fuzzy Tsukamoto. This Tsukamoto method states that every result of IF-Then must be described as a fuzzy set with an immutable or monotonic membership function, and uses PHP for programming. The results obtained in the study conducted by the authors were in the form of an expert system that detects diabetes and obtains results with 94% accuracy.
Classification of Arabica Coffee Green Beans Using Digital Image Processing Using the K-Nearest Neighbor Method Nurun Najmi Amanina; Galuh Wilujeng Saraswati
Journal of Applied Intelligent System Vol 7, No 2 (2022): Journal of Applied Intelligent System
Publisher : Universitas Dian Nuswantoro and IndoCEISS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jais.v7i2.6449

Abstract

Arabica coffee is the largest commodity produced by farmers in Pagergunung Village, Bulu District, Temanggung Regency. Coffee production in recent years has increased rapidly by 80% with the increasing lifestyle of the Indonesian people marked by the number of coffee shop buildings in various regions, and of course the demand for Arabica coffee has also increased, therefore it must improve the quality or quality of the coffee itself. However, in determining and classifying the quality of coffee beans, errors often occur due to the lack of understanding of the farmers in processing coffee. Based on this, the purpose of this research is to classify using the K- Nearest Neighbor method and feature extraction using the average value of Red-Green-Blue (RGB) color in determining the quality and quality of coffee beans according to grade so that they can get a high selling price. In this study using as many as 150 training image data and 150 testing image data, the results of this classification accuracy are 80% using k=1.
Transfer Learning with Xception Architecture for Snakefruit Quality Classification Rismiyati Rismiyati; Ardytha Luthfiarta
Journal of Applied Intelligent System Vol 7, No 2 (2022): Journal of Applied Intelligent System
Publisher : Universitas Dian Nuswantoro and IndoCEISS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jais.v7i2.6797

Abstract

Machine learning has been greatly used in the field of image classification. Several machine learning techniques perform very well in this task. The development of machine learning technique in recent years are in the direction of deep learning. One of the main challenge of deep learning is that it requires the number of the samples to be extremely large for the model to perform well. This is because the number of feature that trainable parameter are huge. One of the solution to overcome this is by introducing transfer learning. One of the architecture that is currently introduced is Xception architecture. This architecture is claimed to outperform VGG16, ResNet50, and inception in terms of model accuracy and model size. This research aims to classify snakefruit quality by using transfer learning with Xception architecture. This is to explore possibility to achieve better result as Xception architecture generally perform better than other available architecture in transfer learning. The snakefruit quality is classified into two classes. Hyperparameter value is optimized by several scenario to determine the best model. The best performance is achieved by using learning rate of 0.0005, momentum 0.9 and dropout value of 0 or 0.25. The accuracy achieved is 94.44%.

Page 10 of 20 | Total Record : 191