cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Jurnal Fourier
ISSN : -     EISSN : -     DOI : -
FOURIER adalah Jurnal Ilmiah bidang yang memadukan dan mengembangkan ilmu Matematika dan pembelajarannya yang diintegrasikan dan interkoneksikan dengan nilai-nilai keislaman terbit sejak tahun 2012 dengan frekuensi terbit 2 kali dalam setahun yang dengan bahasa utama (Bahasa Indonesia dan Bahasa Inggris) yang proses reviewernya sesuai dengan disiplin ilmunya (Analisis, Aljabar, Matematika Terapan, Statistika, dan Pendidikan Matematika).
Arjuna Subject : -
Articles 188 Documents
Rumus Indeks Ketidaknyamanan Suatu Wilayah Sugiasih Sugiasih
Jurnal Fourier Vol. 2 No. 1 (2013)
Publisher : Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (243.906 KB) | DOI: 10.14421/fourier.2013.21.19-25

Abstract

Index of discomfort can be determined, this value is to accommodate everyone at level how humans are considered to be comfortable on a place. There are three who wrote formulas i.e., Discomfort Index (DI), temperature Humidity Index (THI) and Comfort Index (CI). In addition to air temperature, air humidity, wind speed there that affect the comfort of a place, such as the density of buildings, distance to the center of the industry, the distance to the center of the trade, the distance to the main street, the coverage of vegetation in the area of the settlements.
Peningkatan Peran Aktif Mahasiswa Pada Kalkulus Integral Menggunakan Metode Pembelajaran Kooperatif Tipe Student Teams-Achievement Division Sumargiyani Sumargiyani
Jurnal Fourier Vol. 2 No. 1 (2013)
Publisher : Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (103.422 KB) | DOI: 10.14421/fourier.2013.21.27-32

Abstract

Problems in teaching integral calculus that requires attention in the motivation of learning alongside students is the active role of the student. The active role of the student during the teaching and learning process will affect on the results of his studies. As for the purpose of this research is to improve the students ' active role by using cooperative learning method type STAD. The subject of research as many as 20 students PGMIPA education courses Math UAD who take Courses Integral Calculus semester three academic year 2012/2013. The cycle is done as much as 3 times the cycle. Data collection is done using sheets of observation, interviewing, documentation, diagnostic tests and field notes. Furthermore the data analyzed by qualitative descriptive. Based on the results of data analysis revealed that the use of cooperative learning methods type STAD can enhance the active role of students in cycle I of 48.53% in category enough, cycle II increased by 59.21% in the category of pretty and cycle III increased by 71.76% in both categories.
Penyelesaian Persamaan Telegraph Dan Simulasinya Agus Miftakus Surur; Yudi Ari Adi; Sugiyanto Sugiyanto
Jurnal Fourier Vol. 2 No. 1 (2013)
Publisher : Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (447.114 KB) | DOI: 10.14421/fourier.2013.21.33-43

Abstract

Equation Telegraph is one of type from wave equation. Solving of the wave equation obtainable by using Green's function with the method of boundary condition problem. This research aim to to show the process obtain;get the mathematical formula from wave equation and also know the form of solution of wave equation by using Green's function. Result of analysis indicate that the process get the mathematical formula from wave equation from applicable Green's function in equation which deal with the wave equation, that is applied in equation Telegraph. Solution started with searching public form from Green's function, hereinafter look for the solving of wave equation in Green's function. Application from the wave equation used to look for the solving of equation Telegraph. Result from equation Telegraph which have been obtained will be shown in the form of picture (knowable to simulasi) so that form of the the equation Telegraph.
Aplikasi Transformasi Laplace Pada Rangkaian Listrik Arifin Arifin; Muhammad Wakhid Musthofa; Sugiyanto Sugiyanto
Jurnal Fourier Vol. 2 No. 1 (2013)
Publisher : Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (429.856 KB) | DOI: 10.14421/fourier.2013.21.45-61

Abstract

Menyelesaikan persamaan diferensial sering terkendala oleh masalah syarat awal atau syarat batas. Masalah syarat batas ini sering dijumpai pada penerapan persamaan diferensial, salah satunya adalah rangkaian listrik. Metode yang dapat digunakan untuk menyelesaikan masalah syarat batas pada persamaan diferensial salah satu diantaranya adalah metode transformasi Laplace. Transformasi Laplace yang didefinisikan dengan L{f(t)}= dapat digunakan untuk mencari solusi dari suatu sistem persamaan diferensial koefisien konstan. Metode penyelesaian suatu rangkaian Listrik dengan menggunakan transformasi Laplace adalah dengan mengubah persamaan diferensial dari domain waktu (t) ke dalam domain frekuensi (s), memetakan masalah nilai awal ke dalam persamaan pembantu, menyelesaikan dengan perhitungan aljabar, dan menggunakan invers transformasi Laplace untuk mendapatkan solusi khusus secara langsung dari sistem persamaan diferensial rangkaian listrik tersebut.
Metode Akra-Bazzi Sebagai Generalisasi Metode Master Dalam Menyelesaikan Relasi Rekurensi Muchammad Abrori
Jurnal Fourier Vol. 2 No. 2 (2013)
Publisher : Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (323.889 KB) | DOI: 10.14421/fourier.2013.22.63-72

Abstract

Rekurensi relation is an equation that relates the elements of a sequence. One of the benefits of the rekurensi relation can be used to calculate the running time/finish of an algorithm. Some algorithms use approach devide-and-conquer in resolving a problem. Rekurensi relations with the approach of the devide and conquer can be solved by several methods. This research aims to know the Akra-Bazzi Method as an extension Method of the Master. This research began with the dissected the concept pertaining to the Relation Rekurensi, methods for resolving Relationship Rekurensi, and lastly about methods of AkraBazzi. Note that Akra-Bazzi Method can solve a rekurensi devide-and-conquer with shorter calculation.
Pewarnaan Simpul Dengan Algoritma Welch-Powell Pada Traffic Light Di Yogyakarta Ana Mardiatus Soimah; Noor Saif Muhammad Mussafi
Jurnal Fourier Vol. 2 No. 2 (2013)
Publisher : Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (505.299 KB) | DOI: 10.14421/fourier.2013.22.73-79

Abstract

Traffic congestion is a problem which is often found in big cities in Indonesia. This requires a range of solutions, one of them with the settings of the traffic light. Traffic light arrangement can be completed with graph theory. Part of graph theory a graph coloring is used. Staining graf three i.e. coloring is differentiated into a knot, staining the sides, and staining region. This research examines the arrangements about traffic light using colorization algorithm Welch knot with Powell. The intersection of Data represented in the graph, which is then solved by coloring the vertices, then look for the value of the effective duration of the time compared to a traffic light settings occur at several intersections in Yogyakarta. Completion of traffic light arrangement using staining nodes provide alternative solutions duration lit the red light and green light is more effective than the secondary data at several intersections in Yogyakarta.
Model Matematika Untuk Kontrol Campak Menggunakan Vaksinasi Maesaroh Ulfa; Sugiyanto Sugiyanto
Jurnal Fourier Vol. 2 No. 2 (2013)
Publisher : Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (347.188 KB) | DOI: 10.14421/fourier.2013.22.81-89

Abstract

Measles (also known as Rubeola, measles 9 day) is a highly contagious virus infection, characterized by fever, cough, conjunctiva (inflammation of the tissue lining of the eye) and skin rash. The disease is caused by infection of measles virus paramyxovirus cluster. It is a deadly disease. Vaccination is the most effective strategy to prevent the disease. It is generally given to children. This research aims to establish a model of the effect of measles vaccination, forming the point of equilibrium and analyze the stability, create a simulation model and interpret them, and to know the design to optimize the vaccination coverage required, so it can reduce the spread of this disease. This research was conducted by the method of literature study. It is expected to provide an overview of the mathematical model used to control measles vaccination with division of classes SEIR. The steps taken is identifying the problem, formulating assumptions to simplifying the model, making the transfer diagram, defining parameters, determining the equilibrium points and analyzing the stability, simulating the model, and forming the design to optimize the vaccination. Then from this research can be obtained free balance point of endemic and diseases and their stability. Based on the results obtained, the simulation is done by taking the data in Yogyakarta, and obtained vaccination coverage with two doses that can increase the herd immunity with lower vaccination coverage.
Penyelesaian Masalah Nilai Batas Persamaan Diferensial Mathieu–Hill Santosa Santosa; Muhammad Wakhid Musthofa; Malahayati Malahayati
Jurnal Fourier Vol. 2 No. 2 (2013)
Publisher : Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (655.98 KB) | DOI: 10.14421/fourier.2013.22.91-103

Abstract

Berbagai masalah fisis dan geometri yang melibatkan dua fungsi atau lebih peubah bebas sangat berkaitan dengan persamaan diferensial. Salah satu analisis fisis tersebut dapat dinyatakan dalam bentuk persamaan diferensial. Ilmuwan matematika yang bernama George W. Hill dan Mathieu meneliti tentang getaran pada pendulum gantung yang bisa dimodelkan dalam bentuk persamaan diferensial Mathieu-Hill. Persamaan diferensial Mathieu-Hill adalah persamaan diferensial orde dua yang didalam fungsi tersebut terdapat fungsi periodik. Persamaan diferensial Mathieu-Hill dapat diselesaikan dengan menggunakan metode aljabar matriks. Pada tahun 2005 sudah diteliti tentang solusi dari persamaan diferensial Mathieu-Hill. Penelitian ini menjelaskan tentang penyelesaian masalah nilai batas pada persamaan diferensial Mathieu Hill yang akan manghasilkan suatu solusi dalam bentuk persamaan periodik. Untuk lebih memahami penyelesaian masalah nilai batas pada persamaan diferensial Mathieu-Hill diberikan salah satu contoh aplikasinya dalam menghitung getaran pada mesin lokomotif kereta yang dimodelkan dalam bentuk persamaan diferensial Hill-Meissner.
Analisis Portofolio Optimal Saham Syariah Menggunakan Multi Index Models (Periode: 04 Januari 2010 – 1 Juli 2013) Mulat Arja’i; Mohammad Farhan Qudratullah
Jurnal Fourier Vol. 2 No. 2 (2013)
Publisher : Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (334.665 KB) | DOI: 10.14421/fourier.2013.22.105-111

Abstract

The portfolio is a combination or aggregation of two or more individual stock and concern for investors is to form the optimum portfolio and one of the ways that can be used are Multi-Index Models (MIM). This Model is a development of the Single Index Models (SIM), if on a SIM only consider one factor that affects the value of the stock, then return at MIM considers more than one factor. This study discusses the optimal portfolio analysis using Multi-Index Models with a case study on the stock of the Sharia Jakarta Islamic Index (JII) period 4 January 2010 – 1 July 2013 by using composite stock price index (IHSG), index Dow Jones Industrial Average (DJIA) and index the Hang Seng Index as a factor in MIM. The results of this research were obtained that the optimum portfolio is a portfolio that was created based on the stocks that had the highest positive return value, i.e. UNVR 41,40%, SMGR 40.66%, KLBF 11.01, and LPKR 6,93% with a value of expected return portfolio amounted to 2.55% and risk of a portfolio of 0,29%.
Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua Dimensi Annisa Eki Mulyati; Sugiyanto Sugiyanto
Jurnal Fourier Vol. 2 No. 2 (2013)
Publisher : Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (468.216 KB) | DOI: 10.14421/fourier.2013.22.113-123

Abstract

Bessel differential equation is one of the applied equation in physics is about heat transfer. Application of modified Bessel function of order zero on heat transfer process of two-dimensional objects which can be modelled in the form of a two-order partial differential equations as follows, ..... With the obtained solutions of Bessel's differential equation application of circular fin, .... two-dimensional temperature stated on the point ..... against time t

Page 7 of 19 | Total Record : 188