cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota bandung,
Jawa barat
INDONESIA
Indonesian Journal on Computing (Indo-JC)
Published by Universitas Telkom
ISSN : 24609056     EISSN : -     DOI : -
Core Subject : Science,
Indonesian Journal on Computing (Indo-JC) is an open access scientific journal intended to bring together researchers and practitioners dealing with the general field of computing. Indo-JC is published by School of Computing, Telkom University (Indonesia).
Arjuna Subject : -
Articles 198 Documents
Sistem Pencarian Lintas Ayat Al-Qur'an Berdasarkan Kesamaan Fonetis Eki Rifaldi; Moch Arif Bijaksana; Kemas Muslim Lhaksamana
Indonesia Journal on Computing (Indo-JC) Vol. 4 No. 2 (2019): September, 2019
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/INDOJC.2019.4.2.342

Abstract

Mencari teks Arab dalam Al-Qur'an tidak mudah bagi pengguna yang tidak memiliki cukup pengetahuan tentang bahasa dan tulisan Arab. Banyaknya ayat dan perbedaan bahasa dalam Al-Qur'an menimbulkan kesulitan tersendiri untuk pencarian ayat oleh masyarakat muslim Indonesia. Dibutuhkan sistem pencarian ayat Al-Qur'an berbasis fonetis yang dapat memudahkan pengguna dalam mencari ayat menggunakan tulisan latin berhuruf alfabet yang merepresentasikan bunyi pengucapan pengguna. Sebagai contoh, jika dilakukan pencarian kata الْحَمْدُ لِلَّـهِ maka sistem akan menampilkan seluruh ayat yang memiliki kemiripan bunyi dengan kata kunci. Untuk saat ini, sudah ada sistem pencarian ayat Al-Qur'an dengan menggunakan phonetic string matching, namun terbatas hanya dapat menemukan ayat berdasarkan query yang tidak lintas ayat. Kemudian jika dilakukan pencarian kata lintas ayat يَوْمِ الدِّينِ (4) إِيَّاكَdengan pencocokan string dalam database, maka sistem tidak dapat memberikan hasil pencarian dua ayat sekaligus. Oleh karena itu, dibangun suatu sistem pencarian ayat Al-Qur'an berdasarkan kemiripan bunyi (fonetis) yang dapat melintasi ayat. Algoritma N-gram berupa trigram digunakan untuk menemukan ayat-ayat yang memiliki kemiripan bunyi (fonetis) karena memiliki MAP yang tinggi untuk kata kunci panjang. Untuk mencari lintas ayat, lima buah trigram ayat selanjutnya ditambahkan ke ujung trigram ayat sebelumnya. Kemudian diperoleh nilai MAP 0,9 dan Recall 0,93.
Smart Packaging Machine (SPANE) berbasis Fuzzy Logic pada Jaringan Internet Of Things (IoT) untuk Optimasi Packing Berat Makanan Taufik Suyanto; Novian Anggis Suwastika; Aji Gautama Putrada
Indonesia Journal on Computing (Indo-JC) Vol. 4 No. 2 (2019): September, 2019
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/INDOJC.2019.4.2.320

Abstract

Salah satu permasalahan optimasi kemasan makanan adalah ketidaktepatan berat kemasan makanan. Kasus ketidaktepatan berat kemasan makanan ini sering terjadi pada sistem kemasan makanan konvensional yang sepenuhnya mengandalkan pada perhitungan timbangan digital tanpa proses pengecekan berat secara berulang. Untuk mengatasi kasus ketidaktepatan berat kemasan makanan tersebut diperlukan pengawasan yang terus menerus serta sistem yang mampu melakukan perhitungan dan memberikan keputusan yang tepat pada berat makanan yang sudah dikemas. Internet of Things mampu memberikan kemampuan untuk melakukan pengawasan otomatis secara terus menerus. Sementara fuzzy logic memberikan kemampuan untuk memberikan keputusan terhadap ketepatan berat kemasan makanan. Pada penelitian ini, dibangun smart packaging machine (SPANE) yaitu sistem timbangan digital berbasis IoT dan fuzzy untuk meningkatkan optimasi kemasan makanan. Tahap pertama, pengambilan data dari alat penghitung beban konvensional dan digital. Tahap kedua, data timbangan di analisa dengan kontrol fuzzy logic. Tahap ketiga, ditentukan hasil optimasi yang lebih baik dari kedua alat penghitung beban. Hasil pengujian yang dilakukan didapatkan hasil pada timbangan konvensional 96.24% sedangkan pada SPANE 98.50%. Optimasi kemasan makanan dapat ditingkatkan hingga 3%.
Improving Smart Lighting with Activity Recognition Using Hierarchical Hidden Markov Model Nur Ghaniaviyanto Ramadhan; Aji Gautama Putrada; Maman Abdurohman
Indonesia Journal on Computing (Indo-JC) Vol. 4 No. 2 (2019): September, 2019
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/INDOJC.2019.4.2.307

Abstract

This paper has the aim of implementing the smart lighting systems that is able to analyze daily movement activities, analyze the performance of hierarchical hidden markov models as predictions and analyze the performance of smart lighting with activity analysis using hierarchical hidden markov models. The purpose is to answer the problems that occur, namely the smart lights only turn on if users are right under the lights so users need a smart light which is able to read the movement of people when approaching the lamp or not. Secondly, there are also smart lights, but when usersare under the lights, it only lights up for a few seconds which should light up if there is a person below or a radius around the lamp so that a smart light is needed when someone is underneath and the lights will die it is outside the radius around the lamp. The model used is the hierarchical hidden markov model which is an extension of the hidden markov model which can solve the problem of evaluation, conclusion and learning with the algorithm used is the viterbi algorithm. The result obtained using HHMM are accuracy of 93%, 92% recall and 86% precision.
Pairwise Preference Regression on Movie Recommendation System Rita Rismala; Rudy Prabowo; Agung Toto Wibowo
Indonesia Journal on Computing (Indo-JC) Vol. 4 No. 1 (2019): Maret, 2019
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/INDOJC.2019.4.1.255

Abstract

Recommendation System is able to help users to choose items, including movies, that match their interests. One of the problems faced by recommendation system is cold-start problem. Cold start problem can be categorized into three types, they are: recommending existed item for new user, recommending new item for existed user, and recommending new item for new user. Pairwise preference regression is a method that directly deals with cold-start problem. This method can suggest a recommendation, not only for users who have no historical rating, but also for those who only have less demographic info. From the experiment result, the best score of Normalized Discounted Cumulative Gain (nDGC) from the system is 0.8484. The standard deviation of rating resulted by the recommendation system is 1.24, the average is 3.82. Consequently, the distribution of recommendation result is around rating 5 to 3. Those results mean that this recommendation system is good to solving cold-start problem in movie recommendation system.
Entity Recognition for Quran English Version with Supervised Learning Approach Muhammad Aris Maulana; Moch. Arif Bijaksana; Arief Fatchul Huda
Indonesia Journal on Computing (Indo-JC) Vol. 4 No. 3 (2019): December, 2019
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/INDOJC.2019.4.3.362

Abstract

The Quran is a Muslim holy book that consists of 6236 ayat or verses which divides into 144 surahs or chapters. In each chapter, there are many entities scattered in each verse. For a person, finding a particular entity will be difficult without a classification process, Resulting in difficulties in understanding the Quran. A system can be modeled to extract the information on entities in the Quran to solve this problem. Therefore, we want to offer a method to identify and classify entities using Entity recognition. The system will use the SVM techniques where the system will be given various entities from the Quran as an input to be able to identify correct entities. We are using the dataset obtained from website tanzil.net consists of 19.473 tokens and 720 entities. The classification scenario using a linear kernel with unigram produces the highest f-measure value of 0.75.Al-Quran merupakan kitab suci Muslim yang terdiri dari 6236 ayat atau bait yang dibagi menjadi 144 surah atau bab. Di setiap bab, ada banyak entitas yang tersebar di setiap ayat. Bagi seorang individu, menemukan entitas tertentu akan sulit tanpa proses klasifikasi yang membuat kesulitan dalam memahami Quran. Sebuah sistem dapat dimodelkan untuk mengekstrak informasi tentang entitas dalam Al-Quran untuk menyelesaikan masalah ini. Oleh karena itu, kami menawarkan sistem untuk mengidentifikasi dan mengklasifikasikan entitas menggunakan Entity Recognition. Sistem akan menggunakan teknik SVM di mana sistem akan diberikan berbagai entitas dari Quran sebagai input untuk dapat mengidentifikasi entitas yang benar. Kami menggunakan dataset yang diperoleh dari situs web tanzil.net terdiri dari 19.473 tokens dan 720 entitas. Skenario klasifikasi yang menggunakan linear kernel dengan unigram memperoleh nilai f-measure tertinggi sebesar 0,75.
Rayleigh Ritz Cubic Spline method for Displacement Simulation Sucker Rod Lazuardy Azhari Bacharuddin Noor; Annisa Aditsania; Putu Harry Gunawan
Indonesia Journal on Computing (Indo-JC) Vol. 4 No. 3 (2019): December, 2019
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/INDOJC.2019.4.3.350

Abstract

Artificial Lift adalah salah satu mekanisme pengangkatan buatan minyak bumi. Mekanisme ini digunakan bila minyak sudah tidak dapat mengalir akibat menurunnya tekanan pada lubang sumur. Sucker beam rod pump adalah salah satu jenis pengangkatan buatan. Penelitian bertujuan menganalisis desain sistem pemompaan berdasarkan renggangan atau displacement dari sucker rod. Sucker rod adalah salah satu komponen dari sistem sucker rod beam pump yang terletak dalam sumur penambangan. Batang ini berfungsi sebagai tempat bergantungnya muatan minyak. Displacement atau renggangan dimodelkan sebagai persamaan gelombang. Perhitungan numerik dilakukan untuk  menentukan solusi persamaan displacement sucker rod. Solusi dari persamaan displacement ini pada tahap berikutnya dapat digunakan sebagai informasi tambahan bagi operator sucker rod beam pump untuk mengetahui kondisi dari sucker rod di sumur. Pada penelitian ini metode Rayleigh Ritz digunakan untuk menentukansolusi numeerik persamaan tersebut. Solusi yang didapat dari perhitungan numerik ini adalahmatriks yang menunjukan perenggangan terhadap segmen sucker rod dan waktu. Hasil yangdidapat memiliki galat 1:43 10????13.
Deteksi Kemiripan Dokumen Bahasa Indonesia Menggunakan Algoritma Smith-Waterman dan Algoritma Nazief & Andriani Bunga Sari; Yuliant Sibaroni
Indonesia Journal on Computing (Indo-JC) Vol. 4 No. 3 (2019): December, 2019
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/INDOJC.2019.4.3.365

Abstract

Perkembangan teknologi semakin canggih dengan adanya internet. Internet yang dapat dengan mudah diakses untuk mencari informasi dan dokumen dapat memicu adanya tindak plagiarisme.  Setiap dokumen yang melakukan tindakan plagiarisme akan susah dikenali tanpa adanya sistem yang dapat mengenali kesamaan dokumen. Sistem yang dapat mendeteksi plagiarisme dengan mencari kemiripan pada dokumen dibutuhkan. Dalam penelitian ini digunakan algoritma Nazief & Andrianidalam proses penentuan kemiripan pada dokumen teks dan algoritma Smith-Watermanuntuk mengidentifikasi kesamaan yang paling signifikan (local alignment) dari dua buah rangkaian sekuens string. Hasil akhir yang didapatkan perbandingan dua sequence dengan bantuanpreprocessingmemiliki tingkat perhitungansimilarity yang lebih besar dalam mendeteksi kemiripan dokumen. Kata Kunci: Dokumen, Plagiarisme, Algoritma Smith-Waterman, Algoritma Nazief & Andriani
Pembangunan Korpus dari Rangkaian Kata yang Berulang pada Al-Quran Miftahul Adnan Rasyid; Moch Arif Bijaksana; Ibnu Asror
Indonesia Journal on Computing (Indo-JC) Vol. 4 No. 3 (2019): December, 2019
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/INDOJC.2019.4.3.351

Abstract

Salah satu cara untuk memahami al-Quran adalah dengan melakukan penafsiran yang benar dan tidak menyimpang, yaitu dengan memperhatikan redaksi kata yang digunakan dalam merangkai ayat-ayat al-Quran. Dengan cara tersebut, maka dapat ditemukan ayat lainnya yang memiliki rangkaian kata yang menyerupai. Salah satu cara untuk mencari ayat yang sama berdasarkan rangkaian kata tersebut adalah dengan menggunakan pendekatan Longest Common Subsequence (LCS) yang dapat mencari rangkaian kata terpanjang bersama dari suatu pasangan teks. Hasil dari pencarian ayat yang sama ini kemudian dikumpulkan hingga menjadi korpus yang diharapkan dapat membantu umat manusia dalam menafsirkan al-Quran. Penelitian ini menghasilkan suatu sistem yang dapat mencari ayat yang sama menggunakan pendekatan LCS, kemudian hasilnya akan dikumpulkan menjadi suatu korpus berdasarkan hasil LCS. Hasil rata-rata yang diperoleh dari beberapa pengujian yang telah dilakukan adalah Data Arab mendapatkan nilai precision adalah 46.84%, nilai recall adalah 96.13%, dan nilai f1-score adalah 62.96%. Sedangkan untuk Data Indonesia mendapatkan nilai precision adalah 40.57%, nilai recall adalah 97.56%, dan nilai f1-score adalah 57.04%
Klasifikasi Gender dan Usia berdasarkan Suara Pembicara Menggunakan Hidden Markov Model Irfan Tri Handoko; Suyanto Suyanto
Indonesia Journal on Computing (Indo-JC) Vol. 4 No. 3 (2019): December, 2019
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/INDOJC.2019.4.3.375

Abstract

Klasifikasi usia-genderberdasarkan suara sangat berguna dalam perkenalan pidato dan dalam pengenalan emosi. Klasifikasi genderjuga telah diterapkan dalam pengenalan wajah, peringkasan video, penentuan tingkat izin yang berbeda untuk kelompok umur yang berbeda, dan lainnya. Pengelompokan usia yang berbeda dibagi menjadi tiga kelompok: anak, muda, menengah, dan senior berdasarkan rentang usia tertentu. Penelitian ini berfokus pada klasifikasi usia-gender berdasarkan suara pembicara menggunakan gabungan Gaussian Mixture Modeldan Hidden Markov Model(GMM-HMM). Pertama, dilakukan pembangunan vektor ciri menggunakan Mel-Frequency Cepstrum Coefficient (MFCC). Selanjutnya, dilakukan pelatihan untuk menghasilkan model akustik untuk semua penutur (pria dan wanita dari berbagai usia) di dalam basisdata pelatihan. Terakhir, HMM diterapkan untuk mendeteksi genderdan kelompok usia. Pada penelitian ini, basisdata suara diambil dari situs Common Voice, yang berisi banyak posting blog, buku-buku lama, film, dan pidato publik lainnya. Hasil eksperimen menunjukkan bahwa model GMM-HMM yang telah dibangun mampu melakukan klasifikasi usia-genderdengan akurasi hingga 96,4%. Model ini dapat diperbaiki dengan pengaturan parameter secara lebih presisi dan penggunaan dataset yang lebih besar.Kata Kunci: Klasifikasi, Mel-Frequency Cepstrum Coefficient, Acoustic Models, Gaussian Mixture Model, Hidden Markov Model
Implementasi Genetic Algorithm dalam Model ARIMA untuk Memprediksi Observasi Time Series Rangga Arya Pamungkas; Indwiarti Indwiarti; Aniq Atiqi Rohmawati
Indonesia Journal on Computing (Indo-JC) Vol. 4 No. 3 (2019): December, 2019
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/INDOJC.2019.4.3.353

Abstract

Nilai harga saham selalu berubah-ubah dan berfluktuasi setiap harinya. Untuk menghadapi masalah mengenai ketidakpastian harga saham, perlu dilakukan suatu peramalan time series untuk memprediksi harga saham di masa mendatang. Pada penelitian ini, metode yang digunakan untuk memprediksi harga saham adalah metode Autoregressive Moving Average (ARIMA). Untuk meningkatkan akurasi dari prediksi harga saham, akan diimplementasikan Genetic Algorithm (GA) pada model ARIMA terbaik yang didapatkan dari proses ARIMA. Hasil dari penelitian ini menunjukkan bahwa prediksi harga saham dengan menggunakan model ARIMA (1,1,1) memiliki nilai Root Mean Square Error (RMSE) sebesar 418.1314. Sedangkan hasil prediksi harga saham dengan mengimplementasikan GA pada model ARIMA (1,1,1) dengan 600 generasi, 1200 generasi, 1800 generasi, 2400 generasi, dan 3000 generasi masing-masing memiliki nilai RMSE berturut-turut sebesar 5827.738, 1319.903, 1080.704, 563.7984, dan 371.0107. Hasil yang didapat menunjukkan bahwa pengimplementasian GA pada ARIMA dengan 3000 generasi dapat meningkatkan akurasi prediksi harga saham, yaitu dengan memiliki nilai RMSE sebesar 371.0107.Kata Kunci: GA, Harga Saham, Model ARIMA, Prediksi, RMSE

Page 10 of 20 | Total Record : 198